¹³C-¹H Dipolar couplings for probing rod-like hydrogen bonded mesogens

M. Kesava Reddy^a, K. Subramanyam Reddy^a, T. Narasimhaswamy^b, Bibhuti B. Das^c, Nitin P. Lobo^c and K.V. Ramanathan^{*d}

^aDepartment of Chemistry, S.V.University, Tirupati 517 502, India. ^bPolymer Laboratory and Chemical Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India. ^cDepartment of Physics, Indian Institute of Science, Bangalore 560012, India. ^d NMR Research Centre, Indian Institute of Science, Bangalore 560012, India.

Electronic Supplementary Information (ESI)

Tables pertaining to solution 2D NMR and DSC of mesogens are included. Figure 1

describes the SAMPI-4 pulse sequence while Figure 2 shows the FT-IR spectra of mesogens.

Table 1 2D ¹H-¹H DQF-COSY and 2D ¹³C-¹H HSQC data of PMAPHMB

Carbon	1 H	¹³ C
Number		
1	-	
2	6.89	114.4
3	8.06	132.3
4	-	-
5	-	-
6	-	-
7	7.18	122.0
8	7.23	122.7
9	-	-
10	8.39	157.7
11	-	-
12	7.69	122.2
13	8.69	150.6
14	-	-
15	-	-
16	7.95	132.2
17	6.86	113.7
18	-	-

Table 2 Transition temperatures and their enthalpy values of PMAPH and PMAPHMB

Code	Transitions	Temperature Heating(°C)	ΔH (k.cal/mole)
РМАРН	Cr ₁ -Cr ₂	92.38	1.90
	Cr ₂ -N	105.06	3.56
	N-I	152.14	0.08
РМАРНМВ	Cr- S _A	101.23	9.77
	S _A -N	121.04	0.009
	N-I	200.75	0.63

Figure Captions

Figure 1: Measurement of ¹³C-¹H Dipolar Couplings using Separated Local Field (SLF) NMR Spectroscopy Figure 2: FT-IR spectra of (A) 4-methoxy benzoic acid (B) PMAPH and (C) PMAPHMB. For measuring the ¹³C-¹H dipolar couplings of the molecules in their mesophase, the SAMPI4 pulse sequence ¹ (Figure 1) was applied on the oriented sample under static conditions. The method yields a 2D spectrum with carbon chemical shifts along the F_2 dimension and the proton-carbon dipolar oscillation frequencies along the F_1 dimension.

Figure 1

The spectra were recorded by using 62.5 kHz of r.f. for both the proton and carbon channels during the t_1 period. During the t_2 period, a broadband hetero-nuclear decoupling pulse scheme SPINAL-64 ² with 30 kHz decoupling strength was used. τ_1 and τ_2 were adjusted to be equal to $7\pi/4\omega_1$ and $6\pi/4\omega_1$, where ω_1 is the r.f. field strength and were respectively 14 µs and 12 µs. In the pulse sequence, for polarization inversion a contact time τ of 2 ms was used. The scale factor of the sequence was estimated experimentally by using the proton coupled ¹³C spectrum of chloroform oriented in the liquid crystal N-(4-ethoxybenzylidine)-4-n-butylaniline (EBBA) as reference. Typically 16 transients were used for each t_1 period with a recycle delay of 15 s between scans to avoid sample heating and 128 t_1 increments were employed. A shifted sine bell window function was applied to the time domain data and the spectra were processed in the phase sensitive mode.

Figure 2

References

- 1 A. A. Nevzorov and S. J. Opella, J. Magn. Reson., 2007, 185, 59.
- 2 B. M. Fung, A. K. Khitrin and K. Ermolaev, J. Magn. Reson., 2000, 142, 7.