To be published in New J. Chem.

Supporting Information

Tuning of H-bonding ability of imidazole N-H towards colorimetric sensing of fluoride and cyanide ions as their sodium salt in aqueous medium

Ramalingam. Manivannan, Angupillai. Satheshkumar and Kuppanagounder P.Elango*

Department of Chemistry, Gandhigram Rural Institute (Deemed University),

Gandhigram 624 302, India.

E-mail: <u>drkpelango@rediffmail.com</u>.

Fax: +91 451 2454466;

Table of Contents

1. UV-Vis spectra of 2a-h with the addition of F	S2-S3
2. UV-Vis spectra of 2a-h with the addition of CN	S4
3. UV-Vis spectra of mixture of 2f (1.25 x 10 ⁻⁴ M) and fluoride and cyanide (1.25 x 10 ⁻⁴ M) ions in DMSO-water mixtures of varying composition S5	
4. Fluorescence emission spectra of 2a-h with the addit	tion of CNS6-S7
5. Optimized structure for (2a-h), and their F and CN	complexesS8-S15
6. HOMO –LUMO for 2a-h	S16
7. HOMO- LUMO for (2a-h)-F complexes	S17
8. HOMO- LUMO for (2a-h)-CN ⁻ complexes	S18
9. ¹ H NMR and LCMS for (2a-h)	S19-S37
10. Experimental procedure for 2a-h	S38-S41

Figure S1. Change in UV-Vis spectra for $\{(A)-2a, (B)-2b, (C)-2c, (D)-2d, (E) 2e, (F)-2f, (G)-2g. (H)-2h\}(6.25x10^{-4} \text{ M})$ in DMSO with the addition of $(1.25x10^{-6} - 0.625x10^{-5}\text{ M})$ of fluoride ion.

Figure S2. Change in UV-Vis spectra for $\{(A)-2a, (B)-2b, (C)-2c, (D)-2d, (E) 2e, (F)-2f, (G)-2g. (H)-2h\}(6.25x10^{-4} \text{ M})$ in DMSO with the addition of $(1.25x10^{-6} - 0.625x10^{-5}\text{M})$ of Cyanide ion.

Figure S3. UV-Vis spectra of mixture of 2f (1.25 x 10⁻⁴ M) and fluoride and cyanide (1.25 x 10⁻⁴ M) ions in DMSO-water mixtures of varying composition.

Figure S4. Change in fluorescence emission spectra for {(A)- 2a, (B)-2b, (C)-2c, (D)-2d, (E) 2e, (F)-2f, (G)-2g. (H)-2h}($6.25x10^{-4}$ M) in DMSO with the addition of $(1.25x10^{-6} - 6.25x10^{-4}$ M) of Cyanide ion.

Optimized structure for 2a, 2a-F and 2a-CN

Optimized structure for 2b, 2b-F and 2b-CN

Optimized structure for 2c, 2c-F and 2c-CN

Optimized structure for 2d, 2d-F and 2d-CN

Optimized structure for 2e, 2e-F and 2e-CN

Optimized structure for 2f, 2f-F and 2f-CN

Optimized structure for 2g, 2g-F and 2g-CN

Optimized structure for 2h, 2h-F and 2h-CN

Figure S4. Optimized structure for (2a-h)f, and their F and CN complexes.

Figure S5. HOMO –LUMO for 2a-h.

Figure S6. HOMO- LUMO for (2a-h)-F complexes.

Figure S7. HOMO- LUMO for (2a-h)-CN⁻ complexes.

¹H NMR for**1**

¹H NMR for 2a, 2a-F and 2a -CN

LCMS for 2a

¹H NMR for 2b, 2b-F and 2b -CN

¹³C NMR for2b

LCMS for 2b

¹H NMR for 2c, 2c-F and 2c -CN

LCMS for 2c

¹H NMR for 2d, 2d-F and 2d -CN

LCMS for 2d

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

¹H NMR for 2e, 2e-F and 2e -CN

LCMS for 2e

¹H NMR for 2f, 2f-F and 2f -CN

LCMS for 2f

¹H NMR for 2g, 2g-F⁻ and 2g -CN⁻

¹³C NMR for 2g

LCMS for 2g

¹H NMR for 2h, 2h-F and 2h -CN

LCMS for 2h

Synthesis of 2-phenyl-1H-naphtho[2,3-d]imidazole-4,9-dione (2a).⁴¹

A mixture of compound **1** (0.5 g, 2.65 mmol) and benzaldehyde (0.280g, 2.65 mmol) in DMSO (5 mL) was heated at 90° C with stirring for 6 h. After cooling to room temperature, the precipitate obtained from the reaction mixture was filtered through a filter paper and washed with cold ethanol to get the pure product as a yellow solid (0.626 g, yield =85%).

Synthesis of 2-(naphthalen-1-yl)-1H-naphtho[2,3-d]imidazole-4,9-dione (2b).

A mixture of compound **1** (0.5 g, 2.65 mmol) and 1-naphthaldehyde (0.4134 g, 2.65 mmol) in DMSO (5 mL) was heated at 90° C with stirring for 6 h. After cooling to room temperature, the precipitate obtained from the reaction mixture was filtered through a filter paper and washed with cold ethanol to get the pure product as a yellow solid (0.7916 g, yield =91%).

Synthesis of 2-(4-nitrophenyl)-1H-naphtho[2,3-d]imidazole-4,9-dione (2c).

A mixture of compound **1** (0.5 g, 2.65 mmol) and 4-nitro benzaldehyde (0.4015 g, 2.65 mmol) in DMSO (5 mL) was heated at 90° C with stirring for 8 h. After cooling to room temperature, the precipitate obtained from the reaction mixture was filtered through a filter paper and washed with cold ethanol to get the pure product as a greenish yellow solid (0.6926 g, yield = 81%).

Synthesis of 2-(3-phenoxyphenyl)-1H-naphtho[2,3-d]imidazole-4,9-dione (2d).

A mixture of compound **1** (0.5 g, 2.65 mmol) and 3-phenoxybenzaldehyde (0.5247 g, 2.65 mmol) in DMSO (5 mL) was heated at 90° C with stirring for 12 h. After cooling to room temperature, the precipitate obtained from the reaction mixture was filtered through

a filter paper and washed with cold ethanol to get the pure product as a brown solid (0.8012 g, yield = 82%).

Synthesis of 2-(pyridin-2-yl)-1H-naphtho[2,3-d]imidazole-4,9-dione (2e).

A mixture of compound **1** (0.5 g, 2.65 mmol) and pyridine 2-carbaldehyde (0.2836 g, 2.65 mmol) in DMSO (5 mL) was heated at 90° C with stirring for 4 h. After colling to room temperature, the precipitate obtained from the reaction mixture was filtered through a filter paper and washed with cold ethanol to get the pure product as a yellow solid (0.6210 g, yield =85%).

Synthesis of 2-(thiophen-2-yl)-1H-naphtho[2,3-d]imidazole-4,9-dione (2f).

A mixture of compound **1** (0.5 g, 2.65mmol) and thiophene-2-carbaldehyde (0.2968 g, 2.65 mmol) in DMSO (5 mL) was heated at 90° C with stirring for 5 h. After colling to room temperature, the precipitate obtained from the reaction mixture was filtered through a filter paper and washed with cold ethanol to get the pure product as a dark redish brown solid (0.6175 g, yield =83%).

Synthesis of 2-isopropyl-1H-naphtho[2,3-d]imidazole-4,9-dione (2g).

A mixture of compound 1 (0.5 g, 2.65 mmol) and isobutyraldehyde (0.1909 g, 2.65 mmol) in DMSO (5 mL) was heated at 70° C with stirring for 12 h. After colling to room temperature, the precipitate obtained from the reaction mixture was filtered through a filter paper and washed with cold ethanol to get the pure product as a dark redish brown solid (0.410 g, yield =64%).

Synthesis of 2-(trifluoromethyl)-1H-naphtho[2,3-d]imidazole-4,9-dione (2h).

A mixture of compound 1 (0.5 g, 2.65mmol) in trifluoro aceticacid (2mL) was heated at

 100° C with stirring for 12 h. After colling to room temperature, the precipitate obtained from the reaction mixture was filtered through a filter paper and washed with cold ethanol to get the pure product as a dark brown solid (0.5039 g, yield =71%).