Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry 2013

Anion binding of tris-(thio)urea ligands

Yanlei Zhang,^a Rui Zhang,^a Yanxia Zhao,^b Liguo Ji,^a Chuandong Jia,^b Biao Wu*^a

^a Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China

^b State Key Laboratory for Oxo Synthesis & Selective Oxidation, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000, China

Experimental Section

o-Nitrophenyl isothiocyanate, *p*-nitrophenyl isothiocyanate, *o*-nitrophenyl isocyanate and *p*-nitrophenyl isocyanate were purchased from Alfa Aesar and used as received. All solvents and other reagents were of reagent grade quality. ¹H and ¹³C NMR spectra were recorded on a Mercury plus-400 spectrometer at 400 MHz and 100 MHz, respectively, using TMS as an internal standard. UV-vis spectra were performed on an HP8453 spectrophotometer (1 cm quartz cell). Elemental analyses were performed with an Elementar Vario EL instrument. IR spectra were recorded with a Bruker IFS 120HR spectrometer. ESI-MS measurements were carried out using a Waters ZQ4000 spectrometer. Melting points were detected on an X-4 Digital Vision MP Instrument.

Synthesis of ligands L^2 , L^3 , and complex 1

Scheme S1. Synthesis of ligands L^2 and L^3 : (i) dry CH₂Cl₂; (ii) SnCl₂·2H₂O, ethyl acetate; (iii) L^2 : *p*-nitrophenyl isocyanate, dry THF, L^3 : *p*-nitrophenyl isothiocyanate, dry CH₃CN.

1-(2-Nitrophenyl)-3-(2-amino-phenyl) thiourea (1a)

A solution of *o*-nitrophenyl isothiocyanate (0.90 g, 5.0 mmol) prepared in situ in 200 mL of CH₂Cl₂ was added dropwise under 0 °C to *o*-phenylenediamine (0.56 g, 5.2 mmol) in 40 mL of CH₂Cl₂. The mixture was stirred for 4 h. Solvent was removed and the solid was recrystallized from CH₂Cl₂ to give compound **1a** as a yellow solid (0.72 g, 56 %). M.p.: 153 °C. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 10.01 (s, 1H, Ha), 8.98 (d, 1H, *J* = 8.4 Hz, H3), 8.08 (t, 1H, *J* = 8.4 Hz, H5), 7.71 (s, 1H, Hb), 7.65 (t, 1H, *J* = 8.4 Hz, H4), 7.28 (d, 1H, *J* = 8.0 Hz, H6), 7.25 (t, *J* = 8.4 Hz, H5'), 7.21 (t, 1H, *J* = 8.4 Hz, H4'), 6.90 (d, 1H, *J* = 4.0 Hz, H6'), 6.87 (d, 1H, *J* = 4.0 Hz, H3'), 3.91 (s, 2H, Hc). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 180.3 (CS), 143.8 (C), 142.7 (C), 133.6 (CH), 133.1 (C), 128.3 (CH), 127.6 (CH), 127.5 (CH), 125.2 (CH), 124.3 (CH), 123.5 (C), 122.3 (CH), 116.0 (CH), 115.5 (CH). IR (KBr, v/cm⁻¹): 3420, 1612, 1508, 1347, 1178, 733. Anal. Calcd for C₁₃H₁₂N₄O₂S: C, 54.15; H, 4.20; N, 19.43. Found: C, 54.25; H, 4.10; N, 19.23. ESI-MS: *m/z* 289.1 [**1a** + H]⁺, 95%; 311.1 [**1a** + Na]⁺, 96%.

1,3-Bis(2-aminophenyl)thiourea (1b)

A solution of 1-(2-nitrophenyl)-3-(2-amino-phenyl)thiourea (**1a**, 0.48 g, 1.66 mmol) in 200 mL of ethyl acetate was added dropwise to SnCl_2 (1.31 g, 5.81 mmol) in 20 mL ethyl acetate. The resultant reaction mixture was stirred at room temperature and the progress of reaction was monitored by TLC. After 30 h, the reaction mixture was poured into ice-cold water and extracted with ethyl acetate (3 × 50 mL) to remove excess **1a**. The aqueous phase was neutralized by NaHCO₃ and extracted with ethyl acetate (3 × 50 mL). The organic layers were

combined and concentrated to get the compound **1b** as white powders (0.22 g, 50%). M.p.: 172 °C. ¹H NMR (DMSO- d_6 , 400 MHz, ppm): δ 8.80 (s, 2H, Ha), 7.09 (d, J = 7.6 Hz, 2H, H6), 6.79 (t, J = 3.2 Hz, 2H, H4), 6.73 (d, J = 7.6 Hz, 2H, H3), 6.55 (t, J = 3.2 Hz, 2H, H5), 4.98 (s, 4H, Hb). ¹³C NMR (100 MHz, DMSO- d_6): δ 180.3 (CS), 143.9 (C), 128.2 (CH), 126.9 (CH), 123.9 (C), 116.0 (CH), 115.4 (CH). Anal. Calcd for C₁₃H₁₄N₄S: C, 60.44; H, 5.44; N, 21.69. Found: C, 60.02; H, 5.22; N, 21.53. ESI-MS: m/z 259.1 [**1b** + H]⁺, 75%; 281.1 [**1b** + Na]⁺, 9%.

1,3-Bis(2-(4-nitrophenyl)urea-phenyl)thiourea (L²)

A solution of 1,3-bis(2-aminophenyl)thiourea (**1b**, 0.26 g, 1.0 mmol) in 100 mL of THF was added dropwise into a 130 mL refluxing THF solution of *p*-nitrophenyl isocyanate (0.36 g, 2.2 mmol). The mixture was refluxed for 5 h and the precipitate was filtered off and washed several times with toluene and diethyl ether and then dried over vacuum to yield pure L^2 as a yellow solid (0.46 g, 78%). M.p.: 227 °C. ¹H NMR (400 MHz, DMSO-*d*₆, ppm): δ 10.01 (s, 2H, Hc), 9.37 (s, 2H, Ha), 8.323 (s, 2H, Hb), 8.16 (d, *J* = 8.0 Hz, 4H, H8), 7.81 (d, 2H, H3), 7.64 (d, *J* = 8.0 Hz, 4H, H7), 7.43 (d, *J* = 8.0 Hz, 4H, H6), 7.23 (t, *J* = 4.0 Hz, 4H, H5). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 157.7 (CS), 151.7 (CO), 146.4 (C), 139.7 (C), 134.0 (C), 132.4 (C), 130.5 (CH), 129.0 (CH), 127.7 (CH), 122.9 (CH). Anal. Calcd for C₂₇H₂₂N₈O₆S: C, 55.28; H, 3.78; N, 19.10. Found: C, 55.18; H, 3.66; N, 19.02. ESI-MS: *m/z* 585.1 (17%), [L^2 -H]⁻.

1,3-Bis(2-(4-nitrophenyl) thiourea-phenyl)thiourea (L³)

1,3-Bis(2-aminophenyl)thiourea (**1b**, 0.10 g, 0.4 mmol) was added to a solution of *p*-nitrophenyl isothiocyanate (0.17 g, 0.9 mmol) in dry CH₃CN (130 mL). The mixture was stirred at r.t. for about 30 h. The precipitate was filtered off and washed several times with toluene and diethyl ether and then dried over vacuum to yield pure L^3 as a yellow solid (0.20 g, 81%). M.p.: 184 °C. ¹H NMR (400 MHz, DMSO-*d*₆, ppm): δ 10.57 (s, 2H, Hc), 9.65 (s, 2H, Ha), 9.44 (s, 2H, Hb), 8.18 (d, *J* = 8.8 Hz, 4H, H8), 7.88 (d, *J* = 8.8 Hz, 4H, H7), 7.47 (m, 4H, H3 + H6), 7.25 (m, 4H, H4 + H5). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 180.7 (CS), 180.1 (CS), 148.1 (C), 142.7 (C), 134.4 (C), 134.0 (C), 128.3 (CH), 128.0 (CH), 126.9 (CH), 126.7 (CH), 124.5 (CH), 122.0 (CH). Anal. Calcd for C₂₇H₂₂N₈O₄S₃: C, 52.41; H, 3.58; N, 18.11. Found: C, 52.23; H, 3.43; N, 18.05. ESI-MS: *m/z* 619.1 (12%), [L³ + H]⁺; 641.1 (100%), [L³ + Na]⁺.

X-ray crystallography

Single crystal X-ray diffraction data were collected on a Bruker SMART APEX II diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). An empirical adsorption correction using SADABS was applied for the data. The structures were solved by direct methods using the SHELXS-97 program. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares on F^2 by the use of the program SHELXL-97, and hydrogen atoms were included in idealized positions with thermal parameters equivalent to 1.2 times those of the atom to which they were attached. In complex **1**, there are additional, severely disordered solvent molecules in the crystal lattice (about 0.9 CH₂Cl₂ molecules per formula, or 0.44 CH₂Cl₂ molecules per asymmetric unit), and the SQUEEZE command was employed in the refinement of the structure. Moreover, the carbon atoms (C2, C3, C5, C6) on one of the aryl rings and the oxygen atoms (O2, O3) on one nitro groups of the ligand are disordered to two positions and were refined with 0.5 occupancies.

D–H···A	<i>d</i> (D–H)	$d(\mathbf{H}\cdots\mathbf{A})$	$d(\mathbf{D}\cdots\mathbf{A})$	∠DHA
N6-H6…O7	0.86	2.20	2.963(4)	148
N7–H7…O7	0.86	1.99	2.780(4)	153
N2-H2…O7	0.86	2.01	2.852(4)	165
N3-H3…O7	0.86	2.28	3.071(4)	153
N4−H4…O8	0.86	1.90	2.716(5)	156
N5-H5…O8	0.86	2.42	3.120(6)	141
C52−H52A…O6	0.97	2.67	3.510(4)	147
C52-H52A…O5	0.97	2.49	3.272(4)	137
C52-H52B…S1'	0.97	2.73	3.592(3)	148
O10…O10"			2.469(4)	
O8…O9"			2.579(5)	

Table S1. Hydrogen bonds [Å and °] in the crystal structures of complex 1.

Symmetry codes: "*x*, 1–*y*, 1/2+*z*; '1–*x*, *y*, 1/2–*z*.

Solution binding studies

(1) 1 H NMR titration:

A stock solution of **L** $(5.0 \times 10^{-3} \text{ M})$ in DMSO (1 mL) was prepared for the ¹H NMR titration. A stock solution of anions (200 uL, 0.125 M; 0.625 M) was prepared using this solution as a solvent. Small portions (2–5 µL) of the anion solution were added to the solution of ligand **L** (500 uL), and the spectrum was recorded after each addition. The association constants (*K*) were determined by WinEQNMR as depicted below.

(2) UV-Vis titration:

A stock solution of L $(1.0 \times 10^{-5} \text{ M})$ in DMSO (100 mL) was prepared for the UV/vis titration. A stock solution of the anions (2 mL, 2–10 mM) was prepared using this solution as the solvent. Small portions (2–5 µL) of the anion solution were added to the solution of ligand L (2.0 mL), and the spectrum was recorded after each addition. The association constants (*K*) were determined by Dynafit3 as depicted below.

(3) Job's plots:

¹H NMR spectroscopy: Stock solutions of host (5.0 mM) and guest (5.0 mM) in DMSO- d_6 (5.0 mL) were prepared in separate volumetric flasks. Ten 5 mm-o.d. NMR tubes were separately filled with a total of 500 µL solution of the host and guest in the following ratios (µL, host/guest) at 297 K: 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9. The ¹H NMR spectra were obtained for each tube and the NHc signals were used to calculate the complex concentration, [HG] = [H]_t × ($\delta_{obsd} - \delta_{free}$)/($\delta_{com} - \delta_{free}$), where [H]_t is the total concentration of the host, δ_{obsd} is the chemical shift observed on every point, δ_{free} and δ_{com} corresponds to the chemical shifts of the free ligand and the complex. This value was plotted against the molar fraction of the host.

UV/vis spectroscopy: Stock solutions of L (1.0×10^{-5} M, DMSO-5% water) and of anions (the concentration is the same as that of L) were separately prepared in volumetric flasks. To a UV/visible cell, a total of 2.0 mL solution of L and PO₄³⁻ was added in the following ratios (Host/ Guest): 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9, 0:10, and each spectrum was recorded. Job's plots were constructed by plotting [*HG*]· α against mol fraction of the L

$$A = A_H + A_{HG} \cdots \cdots (1)$$

Here, A is the observed UV absorbance of the each solution, and A_H and A_{HG} correspond to the UV absorbance of the free oligoindole and its complex, respectively. According to

Beer-Lambert's law and by introducing $r = \frac{\mathcal{E}_{HG}}{\mathcal{E}_{H}}$, the equation (1) becomes, $\frac{A}{b\mathcal{E}_{H}} = [H]_{0} + [HG](\gamma - 1)^{\dots}(2)$

The equation (2) can be rewritten into the equation (3) by replacing $\gamma - 1 = \alpha$

$$[HG]\alpha = \frac{A}{b\varepsilon_{H}} - [H]_{0} \dots (3), \text{ where } \alpha = \frac{\varepsilon_{HG}}{\varepsilon_{H}} - 1 = \frac{\Delta\varepsilon_{HG}}{\varepsilon_{H}}$$

L ²	NHc NHa NHb
L ² /1 SO ₄ ²	NHc NHa NHb
L²/1 H ₂ PO ₄ ·	NHC NHA NHB
L ² /1 PO ₄ ^{3.} NH	H¢ NHb
NHC L ² /1 F [·] NHa	NHb MUL
L²/1 AcO	NHC NHaNHb Liliu
L ² /1 Cl	NHc NHa NHb
L²/1 Br	No changes
L ² /1 CIO ₄	No changes
L ² /1 HSO ₄	No changes
L²/1 ŀ	No changes thum
L ² /1 NO ₃ .	No changes
ppm (t1) 15.0	10.0

Fig. S1 ¹H NMR spectra of L^2 (5 mM) in the presence of 1.0 equiv of various anions (added as TBA⁺ salts, DMSO-*d*₆-0.5% water, 400 MHz).

Fig. S2 (Top) Job plot of L² with AcO⁻ (as TBA⁺ salt); (Bottom) The corresponding ¹H NMR spectra (DMSO-*d*₆-0.5% water, 400 MHz).

Fig. S3 Change of the chemical shifts of NH signals upon titration of host L^2 with AcO⁻ ions.

Fig. S4 ¹H NMR titration of L² with AcO⁻ in DMSO- d_6 -0.5% water (400 MHz).

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 17:32:30 on 05/10/2013

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = ML FILE: TEST11.FIT IDEAL DATA: K1 = 217; DELTA M = 8.319; DELTA ML = 12 File prepared by M. J. Hynes, October 22 2000

NO. A PARAMETER DELTA CONDITION DESCRIPTION ERROR 1 1 1.15679E+03 2.000E-01 8.593E+01 3.334E+00 K1 2 9.93400E+00 2.000E-01 1.939E-02 1.877E+00 1 SHIFT M 1 1.21021E+01 6.000E-01 1.542E-02 2.219E+00 3 SHIFT ML 0RMS ERROR = 2.81E-02 MAX ERROR = 5.50E-02 AT OBS.NO. 11 RESIDUALS SQUARED = 1.03E-02

RFACTOR = 0.2250 PERCENT

Fig. S5 (Top) Job plot of L^2 with SO₄²⁻ (as TBA⁺ salt); (Bottom) The corresponding ¹H NMR spectra (DMSO-*d*₆-0.5% water, 400 MHz).

Fig. S6 ¹H NMR titration of L² with SO₄²⁻ in DMSO- d_6 -0.5% water, 400 MHz.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 16:03:59 on 03/08/2013 IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = ML

```
FILE: TEST11.FIT
 IDEAL DATA: K1 = 299; DELTA M = 9.995; DELTA ML = 11.1
 File prepared by M. J. Hynes, October 22 2000
NO. A
          PARAMETER
                          DELTA
                                     ERROR
                                                CONDITION
                                                              DESCRIPTION
   1
         3.49004E+03 2.000E-01 1.766E+02 1.440E+00
                                                    K1
      1
   2
         9.95450E+00 2.000E-01 1.822E-02 1.662E+00
      1
                                                   SHIFT M
     1 1.11305E+01 1.000E+00 1.730E-02 1.662E+00
   3
                                                    SHIFT ML
0RMS ERROR = 2.56E-02 MAX ERROR = 4.17E-02 AT OBS.NO. 10
 RESIDUALS SQUARED = 5.26E-03
```

RFACTOR = 0.2069 PERCENT

Fig. S7 (Top) Job plot of L² with Cl⁻ (as TBA⁺ salt); (Bottom) The corresponding ¹H NMR spectra (DMSO-*d*₆-0.5% water, 400 MHz).

Fig. S8 ¹H NMR titration of L² with Cl⁻ in DMSO- d_6 -0.5% water, 400 MHz.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 17:11:23 on 05/10/2013

```
IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)
Reaction: M + L = ML
FILE: TEST11.FIT
IDEAL DATA: K1 = 90; DELTA M = 10.029; DELTA ML = 11.0
File prepared by M. J. Hynes, October 22 2000
```

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION 1 2.95400E+02 2.000E-01 1.226E+01 4.040E+00 1 K1 2 1 9.99580E+00 2.000E-01 6.489E-03 2.327E+00 SHIFT M 3 1 1.09339E+01 1.000E+00 4.324E-03 2.206E+00 SHIFT ML 0RMS ERROR = 1.02E-02 MAX ERROR = 2.46E-02 AT OBS.NO. 20 RESIDUALS SQUARED = 2.18E-03 RFACTOR = **0.0900 PERCENT**

L ³ /1 SO ₄ ^{2.}	NHc NHa NHb	Mm
L ³ /1 H ₂ PO ₄	NHc NHa NHb	Mrl
L ^{3/} 1 PO ₄ ^{3.}	Deprotonation	Min
L ³ /1 F [.]	Deprotonation	Mn
L³/1 AcO [,]	NHc NHa NHb	Mn
L ³ /1 Cl	No changes	Un_
L³/1 Br	No changes	_m_
L³/1 f	No changes	_llm_
L ³ /1 HSO ₄ -	No changes	LL.
L ^{3/} 1 CIO ₄	No changes	_llm_
L3/1 NO.	No changes	A A A A

Fig. S9 ¹H NMR spectra of L³ (5 mM) in the presence of 1.0 equiv of various anions (added as TBA⁺ salts, DMSO- d_6 -0.5% water, 400 MHz).

L ³	NHc •		873 	6 45 √∧
PO4 ³ /L ³ = 0.1	•	•	m	M
PO ₄ ³ /L ³ = 0.3	Depr	otonation	m	<u> </u>
PO ₄ ^{3.} / L ³ = 0.5	Depr	rotonation	1	
ppm (t1) 12.0	11.0	10.0 9.0	8.0	7.0

Fig. S10 ¹H NMR titration of L^3 with PO_4^{3-} (as TBA⁺ salt; DMSO-*d*₆-0.5% water, 400 MHz).

Fig. S11 Color change of L^3 in the presence of 3.0 equiv of various anions added as TBA salts, PO_4^{3-} as Na⁺ salt: a) SO_4^{2-} , b) F⁻, c) PO_4^{3-} , d) AcO⁻, e) H_2PO_4^{-}, f) free L^3 .

L³	NHc	NHa	NHb	\$7.36	45
SO4 ²⁻ /L ³ = 0.1	•		2	11.3e	s
SO ₄ ² /L ³ = 0.2	•	<u>_</u>		Mr	'.L
SO4 ² /L ³ = 0.3	•			M 36	1
SO42/L3 = 0.4	•	-		M36	
•		s s	$O_4^{2}/L^3 = 0.5$	136	
•		• •	$SO_4^{2}/L^3 = 0.6$	36	
•			$SO_4^{2}/L^3 = 0.7$	136	
•		s	$O_4^{2}/L^3 = 0.8$	36	1
•		5	$O_4^{2}/L^3 = 0.9$	36	
		5	$SO_4^{2}/L^3 = 1$	36	
Deproto	onation	s	$SO_4^{2}/L^3 = 2$	h	
ppm (t1) 12.0	11.0	10.0	9.0	8.0	7.0

Fig. S12 ¹H NMR titration of L³ with SO₄²⁻ (as TBA⁺ salt; DMSO- d_6 -0.5% water, 400 MHz).

Fig. S13 ¹H NMR titration of L^3 with SO₄²⁻ in DMSO-*d*₆-0.5% water, 400 MHz.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 15:56:55 on 03/23/2013

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = ML FILE: TEST11.FIT IDEAL DATA: K1 =400; DELTA M = 10.572; DELTA ML = 12.2 File prepared by M. J. Hynes, October 22 2000 NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION 1 1 1.48588E+03 2.000E-01 2.375E+02 9.346E+00 K1 2 1 1.04835E+01 2.000E-01 2.938E-02 2.091E+00 SHIFT M 3 1 1.29777E+01 1.000E+00 8.605E-02 1.042E+01 SHIFT ML 0RMS ERROR = 3.92E-02 MAX ERROR = 5.83E-02 AT OBS.NO. 10 RESIDUALS SQUARED = 1.08E-02 RFACTOR = 0.2843 PERCENT

Fig. S14 UV-vis spectra of \mathbf{L}^2 (1.0 × 10⁻⁵ M) in DMSO-0.5% water (v/v), alone and in the presence of 1.0 equiv of various anions (added as TBA salts, PO₄³⁻ as Na⁺ salt).

Fig. S15 UV-vis spectra (DMSO-5% water) and Job plot of L^2 with PO₄³⁻ (as Na⁺ salt, 350 nm).

Fig. S16 UV-vis titration of L^2 (1.0 × 10⁻⁵ M) with PO₄³⁻ (as Na⁺ salt) in DMSO-25% water (v/v) in the presence of 1 mM Et₃N to exclude the influence of hydrolysis.

Fig. S17 [A(335nm)/A(410nm)] upon the addition of 1.0 equiv of various anions (as TBA⁺ salts) into the DMSO-0.5% water solutions of L² and L³ (1 × 10⁻⁵ M) at room temperature.

Fig. S18 Preliminary crystal structure of the dichloride complex (TBA)₂[L²Cl₂]. (a) Top view; (b) Side view.