Supporting Information

Multifunctional manganese-doped core/shell quantum dots for magnetic resonance and fluorescence imaging of cancer cells Babao Lin,^{†a} Xiuzhong Yao,^{†b} Yihua Zhu,^a* Jianhua Shen,^a Xiaoling Yang,^a Hongliang Jiang,^a

and Xiaoqing Zhang^a

^{*a*}. Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

^b. Department of Radiology, Zhongshan Hospital of Fudan University and Department of Medical Image, Shanghai Medical College of Fudan University, Shanghai Institute of Medical Imaging, 138 Fenglin Road, Shanghai 200032, China.

*Corresponding author: Fax: +86-21-64250624; Tel: +86 21 64252022; yhzhu@ecust.edu.cn (Y. Zhu)

Figure S1. Evolution of PL spectra of the resulting QDs during the growth of a ZnS shell.

Figure S2. EDX spectra of core QDs (A) and core/shell QDs (B).

Figure S3. XPS spectra of the core/shell QDs. (A) Mn2p, (B) Zn2p, (C) Cu2p and (D) In3d.

Figure S4. Multimodal core/shell quantum dots are detectable by MRI. (A) MR detection. Nanoparticles imaged by T_2 -weighted MRI show increasing signal reduction as Mn²⁺ concentration increases (from left to right, 0, 0.035, 0.068, 0.53, 1.81 mM). (B) T_2 relaxivity plot of aqueous suspension of CuInS₂/Zn_{1-x}Mn_xS.