Manuscript ID NJ-ART-05-2013-000477

Supporting Information

Photophysical, Electrochemical Properties and Temperature Dependent Geometrical Isomerism in Alkyl Quinacridonediimines

Iqbal Javed^{a,b,c*,} Ayub Khurshid^{d,f*}, Muhammad Nadeem Arshad^e, Yue Wang^a

^a State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
 ^a Department of chemistry, Umeå University, SE-901 87 Umeå, Sweden.
 ^c Department of Chemsitry & Biochemsitry, University of Agriculture, Faisalabad, Pakistan.
 ^d Centre of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University,P. O. Box 80203, Jeddah 21589, Saudi Arabia.
 ^e Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, KPK, Pakistan 22060
 ^e Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982 Kingdom of Saudi Arabia

Saudi Arabia

Corresponding author: E-mail: javedkhattak79@gmail.com. & kayub@kfu.edu.sa (for

calculations)

Contents

'HNMR spectrum of compound 1-10	pg. 3-7
Variable temperature ¹ HNMR (213K-303K) of 2	pg. 8-12
Variable temperature ¹ HNMR (298-335K) of 2	pg. 13-15
Variable temperature ¹ HNMR (230K-298K) of 7	pg. 16-18
Variable temperature ¹ HNMR (230K-298K) of 10	pg. 19-21
Variable high temperature ¹ HNMR (298K-338K) of 7	pg. 22-23
¹³ CNMR spectrum of compound 7&10	pg. 24
S-1: Crystal Data of Compounds 2, 3, 6, 7, 8 and 10	pg.25-26

Table.1. Reaction conditions for compounds 2-10 pg.27 Table.2. Photophysical properties of compounds 1-10 pg.27 Table.3. A comparison of eigenvalues of HOMOs and LUMOs of Quinacridonediimines 1-10 (A and **B**) at three different levels of theory. pg.28 Table .4. A comparison of eigenvalues of HOMOs and LUMOs of quinacridones 1-10 (A and B), theoretical and experimental pg.29 S-2: Cyclic votammograms of compound 1-10 recorded in CH₂Cl₂ with scan rate of 100mVs⁻¹ pg. 29 Table 5. Electrochemical data and HOMO, LUMO energy level of compounds 1-10 pg. 30-31 Table.6. Absoulte and relative energies (parenthesis) of EE, EZ and ZZ isomers of Quinacridonediimines 7 and 10 pg. 32

 Table.7. Calculated energies of EE, EZ and ZZ isomers of Quinacridonediimines 7 and 10

 pg. 32-50

¹H NMR spectrum of Compound **1**

¹H NMR spectrum of Compound **3**

Variable temperature ¹HNMR (213K-303K) of 2

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

12

Variable temperature ¹HNMR (298-335K) of **2**

Variable temperature ¹HNMR (230K-298K) of **7**

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

Variable temperature ¹HNMR (230K-298K) of **10**

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

Variable high temperature ¹HNMR (298K-338K) of 7

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

¹³CNMR compound 7

¹³CNMR compound **10**

S1: Crystal Data of Compounds 2, 3, 6, 7, 8 and 10

Crystal data: 2, $C_{40}H_{36}N_4F_2$, $M = 610.73 \text{ g.mol}^{-1}$, red needles, 0.15, 0.13, 0.10 mm³, Triclinic, space group P - I, a = 7.1105(14), b = 9.868(2), c = 12.576(3) Å, $\alpha = 73.23(3)^{\circ}$, $\beta = 78.56(3)^{\circ}$, $\gamma = 70.79(3)$ V = 792.76(3) Å³, Z = 1, $Dc = 1.28 \text{ g.cm}^{-3}$, F000 = 322, MoK α radiation, $\lambda = 0.71073$ Å, T = 263 (2) K, $2\theta max = 55.0^{\circ}$, 7761 reflection collected, 3580 unique (R_{int} = 0.022), Final *GooF* = 1.084, R1 = 0.046, $wR_2 = 0.130$, R indices based on 2728 reflections with I>2 δ (I) (refinement on F^2) 209 parameters, $\mu = 0.084 \text{ mm}^{-1}$.

Crystal data: 3, $C_{40}H_{36}N_4F_2.CH_2Cl_2$, $M = 695.65 \text{ g.mol}^{-1}$, red needles, 0.14, 0.12, 0.12 mm³, Triclinic, space group P - I, a = 8.602(5), b = 13.889(8), c = 15.854(1) Å, $\alpha = 70.40(2)^{\circ}$, $\beta = 79.41(2)^{\circ}$, $\gamma = 88.92(2)$ V = 1752.1(2) Å³, Z = 2, Dc = 1.32 g.cm⁻³, F000 = 728, MoK α radiation, $\lambda = 0.71073$ Å, T = 263 (2) K, $2\theta max = 50.0^{\circ}$, 13676 reflection collected, 6111 unique (R_{int} = 0.026), Final *GooF* = 0.963, R1 = 0.063, $wR_2 = 0.221$, R indices based on 3853 reflections with I>2 σ (I) (refinement on F^2) 460 parameters, $\mu = 0.232$ mm⁻¹.

Crystal data: 6, C₄₄H₄₄N₄F₂, $M = 666.83 \text{ g.mol}^{-1}$, red needles, 0.12, 0.11, 0.10 mm³, Triclinic, space group P - I, a = 8.778(5), b = 9.171(6), c = 13.365(8) Å, $\alpha = 71.67(3)^{\circ}$, $\beta = 72.14(2)^{\circ}$, $\gamma = 62.81(3)$ V = 891.3(1) Å³, Z = 1, Dc = 1.24 g.cm⁻³, F000 = 354, MoK α radiation, $\lambda = 0.71073$ Å, T = 263 (2) K, $2\theta max = 55.0^{\circ}$, 8855 reflection collected, 4050 unique (R_{int} = 0.027), Final *GooF* = 1.06, R1 = 0.055, $wR_2 = 0.160$, R indices based on 2788 reflections with I>2 σ (I) (refinement on F^2) 237 parameters, $\mu = 0.080$ mm⁻¹.

Crystal data: 7, $C_{40}H_{28}N_4F_{10}$, $M = 754.66 \text{ g.mol}^{-1}$, red needles, 0.15, 0.13, 0.10 mm³, Triclinic, space group P - I, a = 7.3925(2), b = 9.2554(2), c = 12.899(3) Å, $\alpha = 88.42(3)^{\circ}$, $\beta = 75.51(3)^{\circ}$, $\gamma = 87.38(3)^{\circ}$ V = 853.5(3) Å³, Z = 1, Dc = 1.47 g.cm⁻³, F000 = 386, MoK α radiation, $\lambda = 0.71073$ Å, T = 263 (2) K, $2\theta max = 50^{\circ}$, 6758 reflection collected, 2979 unique (R_{int} = 0.023), Final *GooF* = 1.05,

R1 = 0.059, wR_2 = 0.183, *R* indices based on 2039 reflections with I>2 σ (I) (refinement on F^2) 245 parameters, $\mu = 0.125 \text{ mm}^{-1}$.

Crystal data: 8, C₄₄H₄₄N₄F₂, $M = 666.83 \text{ g.mol}^{-1}$, red needles, 0.12, 0.11, 0.10 mm³, Monoclinic, space group *C 2/c*, a = 16.453(3), b = 7.222(14), c = 31.554(1) Å, $\beta = 110.38(3)^{\circ}$, V = 3514.7(15) Å³, Z = 4, $Dc = 1.26 \text{ g.cm}^{-3}$, F000 = 1416, MoK α radiation, $\lambda = 0.71073$ Å, T = 173 (2) K, $2\theta max = 50.0^{\circ}$, 13280 reflection collected, 3092 unique (R_{int} = 0.084), Final *GooF* = 1.028, R1 = 0.064, $wR_2 = 0.162$, *R* indices based on 1789 reflections with I>2 σ (I) (refinement on F^2) 229 parameters, $\mu = 0.081 \text{ mm}^{-1}$.

Crystal data: 10, $C_{50}H_{52}N$, $M = 736.98 \text{ g.mol}^{-1}$, red needles, 0.15, 0.13, 0.10 mm³, Triclinic, space group P -1, a = 8.8472(2), b = 9.2195(2), c = 14.044(3) Å, $\alpha = 84.46(3)^{\circ}$, $\beta = 76.26(3)^{\circ}$, $\gamma = 64.35(3)^{\circ} V = 1003.1(3)$ Å³, Z = 1, $Dc = 1.22 \text{ g.cm}^{-3}$, F000 = 394, MoK α radiation, $\lambda = 0.71073$ Å, T = 263 (2) K, $2\theta max = 55.0^{\circ}$, 9921 reflection collected, 4544 unique (R_{int} = 0.070), Final *GooF* = 0.988, R1 = 0.066, $wR_2 = 0.158$, R indices based on 2000 reflections with I>2 σ (I) (refinement on F^2) 254 parameters, $\mu = 0.072 \text{ mm}^{-1}$.

Product	Reactant A	Reactant B	TEA	TiCl ₄	Yield
	(mmoles)	(mmoles)	(mmoles)	(mmoles)	(%)
Compound 2	DBQA (1)	P-Fluoroaniline (4)	8.5	5.4	85
Compound 3	DFDBQA (1)	Aniline (4)	8.5	5.4	70
Compound 4	DFDBQA (1)	P-Fluoroaniline (4)	8.5	5.4	66
Compound 5	TMDBQA (1)	Aniline (4)	8.5	5.4	63
Compound 6	TMDBQA (1)	P-Fluoroaniline (4)	8.5	5.4	51
Compound 7	DBQA (1)	2,3,4,5,6-pentafluoroaniline (4)	8.5	5.4	55
Compound 8	DFDBQA (1)	dimethylaniline (4)	8.5	5.4	45
Compound 9	DBQA (1)	Naphthylamine (4)	8.5	5.4	40
Compound 10	8CQA (1)	p-Cyanoaniline (4)	8.5	5.4	60

Table.1. Reaction conditions for compounds 2-10

Table.2. Photophysical properties of compounds 1-10

Compound	Chloroform	Toluene	Acetone	Thin film
	$\lambda_{max}(nm)$	$\lambda_{max} (nm)$	$\lambda_{max}(nm)$	$\lambda_{max}(nm)$
1	519	518	514	527
2	520	518	515	528
3	535	532	529	541
4	536	534	530	545
5	498	497	492	503
6	500	499	494	512
7	540	542	540	554
8	534	532	531	538
9	525	524	521	535
10	532	529	526	538

Table.3. A comparison of eigenvalues of HOMOs and LUMOs of quinacridones 1-10 (A and B) at

three different levels of theory.

Structur	HOMO	LUMO	Gap	НОМО	LUMO	Gap	HOMO	LUMO	Gap	Exp.
e			B3PW91			B3LYP			PBEPBE	
1a	-4.98	-1.99	2.99	-5.15	-2.21	2.94	-4.27	-2.47	1.80	2.26
2a	-5.06	-2.11	2.95	-5.25	-2.35	2.90	-4.31	-2.55	1.76	2.27
3a	-5.06	-2.17	2.89	-5.26	-2.41	2.85	-4.33	-2.61	1.72	2.22
4a	-5.14	-2.28	2.86	-5.36	-2.54	2.82	-4.37	-2.69	1.68	2.20
5a	-4.81	-1.83	2.98	-4.97	-2.04	2.93	-4.10	-2.30	1.80	2.32
6a	-4.88	-1.92	2.96	-5.07	-2.15	2.92	-4.14	-2.36	1.78	2.38
7a	-5.39	-2.52	2.87	-5.63	-2.81	2.82	-4.60	-2.89	1.71	2.07
8a	-5.00	-2.09	2.91	-5.19	-2.33	2.86	-4.25	-2.53	1.72	2.21
9a	-5.07	-2.05	3.02	-5.24	-2.26	2.98	-4.31	-2.54	1.77	1.99
10a	-5.48	-2.58	2.90	-5.64	-2.78	2.86	-4.78	-3.03	1.75	1.81
1b	-5.00	-2.12	2.88	-5.17	-2.34	2.83	-4.28	-2.58	1.70	2.26
2b	-5.08	-2.22	2.86	-5.28	-2.45	2.83	-4.32	-2.65	1.67	2.27
3b	-5.09	-2.30	2.79	-5.29	-2.54	2.75	-4.34	-2.72	1.62	2.22
4b	-5.17	-2.40	2.77	-5.39	-2.65	2.74	-4.39	-2.79	1.60	2.20
5b	-4.89	-1.89	3.00	-5.05	-2.09	2.96	-4.16	-2.36	1.80	2.32
6b	-4.97	-1.99	2.98	-5.15	-2.21	2.94	-4.21	-2.44	1.77	2.38
7b	-5.44	-2.61	2.83	-5.69	-2.90	2.79	-4.64	-2.98	1.66	2.07
8b	-5.02	-2.34	2.68	-5.21	-2.47	2.74	-4.26	-2.65	1.61	2.21
9b	-5.04	-2.13	2.91	-5.21	-2.34	2.87	-4.29	-2.61	1.68	1.99
10b	-5.49	-2.71	2.78	-5.65	-2.91	2.74	-4.78	-3.14	1.64	1.81

Table .4. A comparison of eigenvalues of HOMOs and LUMOs of quinacridones 1-10 (A and B),

							_		
	1A			1B			Exp.		
Structure	НОМО	LUMO	Gap	HOMO _{Th}	LUMO _{Th}	Gap	НОМО	LUMO	Gap
1	-4.98	-1.99	2.99	-5.00	-2.12	2.88	-5.05	-2.78	2.26
2	-5.06	-2.11	2.95	-5.08	-2.22	2.86	-5.19	-2.92	2.27
3	-5.06	-2.17	2.89	-5.09	-2.30	2.79	-5.21	-2.99	2.22
4	-5.14	-2.28	2.86	-5.17	-2.40	2.77	-5.23	-3.03	2.20
5	-4.81	-1.83	2.98	-4.89	-1.89	3.00	-5.05	-2.73	2.32
6	-4.88	-1.92	2.96	-4.97	-1.99	2.98	-5.12	-2.74	2.38
7	-5.39	-2.52	2.87	-5.44	-2.61	2.83	-5.34	-3.27	2.07
8	-5.00	-2.09	2.91	-5.02	-2.34	2.68	-5.08	-2.86	2.21
9	-5.07	-2.05	3.02	-5.04	-2.13	2.91	-4.94	-2.95	1.99
10	-5.48	-2.58	2.90	-5.49	-2.71	2.78	-5.30	-3.48	1.81

theoretical and experimental

S2. Cyclic votammograms of compound **1-10** recorded in CH₂Cl₂ with scan rate of 100mVs⁻¹

Compound	$E_{ox}^{1/2}(V)$	$E_{red}^{1/2}(V)$	LUMO	НОМО	Eg
1	+0.25	-1.95	-2.78	-5.05	2.26
2	+0.47	-1.80	-2.92	-5.19	2.27
3	+0.49	-1.72	-2.99	-5.21	2.22
4	+0.50	-1.69	-3.03	-5.23	2.20
5	+0.40	-1.99	-2.73	-5.05	2.32
6	+0.41	-1.98	-2.74	-5.12	2.38
7	+0.68	-1.45	-3.27	-5.34	2.07
8	+0.54	-1.82	-2.86	-5.08	2.21
9	+0.22	-1.78	-2.95	-4.94	-1.99
10	+0.62	-1.20	-3.48	-5.30	1.81

Table.5. Electrochemical data and HOMO, LUMO energy level of compounds 1-10

Table.6. Absoulte and relative energies (parenthesis) of EE, EZ and ZZ isomers of Quinacridonediimines 7 and 10

Compound	EE	EZ	ZZ
7	-2757.4270159 (0.0)	-2757.4230023(2.5)	-2757.4176056 (5.9)
10	-1949.9373194 (0.0)	-1949.9348575 (1.54)	-1949.9288255 (5.33)

Table.7. Calculated energies of EE, EZ and ZZ isomers of Quinacridonediimines 7 and 10

7EE

Total energy -2757.4270159

С	0.22265900	-3.67189500	-0.76631000
Ν	-0.74561500	-2.70235800	-0.25221300
С	-0.36945000	-1.36874700	-0.12207600
С	0.95542800	-0.95836900	-0.28274600
С	1.33653200	0.37729700	-0.17002000
С	0.36944900	1.36874500	0.12206100
С	-0.95542800	0.95836700	0.28273100
Н	-1.75916500	1.65900400	0.46887600
С	-1.33653300	-0.37729800	0.17000400
С	-2.75716100	-0.73650800	0.28197000
С	-3.01491300	-2.16604500	0.47277800
С	-2.00019100	-3.11490300	0.16756900
С	-2.29643400	-4.48761400	0.31311700
С	-3.52506700	-4.90494500	0.79120600
С	-4.50232200	-3.97417500	1.15846900
С	-4.23697400	-2.62859500	0.99525000
Н	-4.98356400	-1.90133100	1.29123500

Н	-5.45235100	-4.30086200	1.57006800
Н	-3.71407600	-5.96939600	0.90327000
Н	-1.54671100	-5.23562900	0.08754700
Ν	-3.60132400	0.24660700	0.24175600
С	-4.97145600	0.17536700	0.10237900
С	-5.60557500	-0.45780800	-0.98203900
С	-6.97396300	-0.35717100	-1.19852200
С	-7.76225100	0.40260500	-0.33918500
С	-7.16553100	1.05163300	0.73741200
С	-5.79345900	0.95436400	0.93467600
F	-5.24843000	1.60070800	1.97054800
F	-7.91233700	1.78003900	1.57048900
F	-9.07806000	0.49859600	-0.53946600
F	-7.53587400	-0.98116400	-2.23644000
F	-4.87663800	-1.18811700	-1.83300900
Ν	0.74561500	2.70235500	0.25220200
С	2.00019200	3.11490100	-0.16757800
С	3.01491300	2.16604300	-0.47278700
С	4.23696900	2.62859000	-0.99527100
С	4.50231800	3.97416900	-1.15849400
С	3.52506600	4.90494100	-0.79122800
С	2.29643400	4.48761200	-0.31313200
Н	1.54671200	5.23562700	-0.08756500
Н	3.71407300	5.96939100	-0.90329900
Н	5.45234500	4.30085400	-1.57010000
Н	4.98355600	1.90132300	-1.29126200
С	2.75716100	0.73650700	-0.28198300
Ν	3.60132700	-0.24660400	-0.24176900

С	4.97145500	-0.17536200	-0.10237500
с	5.79346900	-0.95435000	-0.93467400
С	7.16553900	-1.05162000	-0.73739700
С	7.76224700	-0.40260700	0.33921600
С	6.97394800	0.35715600	1.19855500
С	5.60556300	0.45779600	0.98205900
F	4.87661600	1.18809100	1.83303200
F	7.53584800	0.98113400	2.23648800
F	9.07805300	-0.49859800	0.53950900
F	7.91235300	-1.78001400	-1.57047600
F	5.24845000	-1.60068000	-1.97056000
С	-0.22266000	3.67189200	0.76629900
Н	-0.83026700	3.15965300	1.51851500
Н	0.33223500	4.44032000	1.31300100
С	-1.12023400	4.30657600	-0.29944100
Н	-1.64821500	3.51683400	-0.84889900
Н	-0.50024600	4.82827400	-1.04035800
С	-2.13377600	5.27756000	0.30855800
Н	-2.75251100	4.74358600	1.04327100
Н	-1.60224600	6.06018100	0.86915400
С	-3.03504400	5.92483900	-0.74027200
Н	-3.75381800	6.60967700	-0.27749100
Н	-2.44933400	6.49803300	-1.46895400
Н	-3.60408900	5.16832300	-1.29329700
Н	1.75916500	-1.65900600	-0.46888900
Н	-0.33223800	-4.44032800	-1.31300500
Н	0.83026100	-3.15965900	-1.51853200
С	1.12024100	-4.30657200	0.29942900

Н	1.64821800	-3.51682400	0.84888300
Н	0.50025900	-4.82827200	1.04034900
С	2.13378700	-5.27755000	-0.30857200
Н	1.60226100	-6.06017500	-0.86916600
Н	2.75251700	-4.74357300	-1.04328700
С	3.03506200	-5.92482300	0.74025700
Н	2.44935600	-6.49802000	1.46893900
Н	3.75383900	-6.60965600	0.27747400
Н	3.60410200	-5.16830300	1.29328000

7EZ

Total energy -2757.4230023

Ν	0.49666700	3.36201400	0.06494700
С	1.70283300	4.02141100	-0.13450900
С	1.75335400	5.42082100	-0.31357400
С	2.96320100	6.06847900	-0.49426100
С	4.16655800	5.35373000	-0.50363700
С	4.13060200	3.98444400	-0.32579600
С	2.91834900	3.29770100	-0.14472100
С	2.93048100	1.85102700	0.09460300
Ν	4.07218000	1.30354100	0.35826300
С	4.35612900	0.05279200	0.85256800
С	3.81998700	-0.41498900	2.07399900
Н	3.08743500	0.19415700	2.59502700
С	4.23404000	-1.61999800	2.61612700
С	5.19516000	-2.40703000	1.95770100
С	5.74406700	-1.94369800	0.74944600

С	5.33965400	-0.73188600	0.21407000
Н	5.78126200	-0.36168800	-0.70640200
Н	6.50144600	-2.53645700	0.24467200
Н	3.81855100	-1.96269000	3.55947100
Н	5.03944900	3.39149400	-0.31519400
Н	5.11253100	5.86647400	-0.65032200
Н	2.96657000	7.14571200	-0.63970900
Н	0.84272000	6.00643100	-0.33773500
С	-0.73476500	4.12774600	0.26441100
Н	-1.38250700	3.54987600	0.93069600
Н	-0.47316100	5.02985200	0.82263300
С	-1.47270100	4.46981300	-1.03401700
Н	-0.82533100	5.08984900	-1.66830200
Н	-1.64479100	3.54263700	-1.59382300
С	-2.81087400	5.18057300	-0.80423400
Н	-3.45205500	4.55292700	-0.16905100
Н	-3.32710100	5.25639700	-1.76964800
С	-2.69347600	6.57691200	-0.19295600
Н	-2.05735100	7.22599900	-0.80771600
Н	-3.67655000	7.05438100	-0.11900600
Н	-2.27059000	6.55441100	0.81796700
С	5.61137400	-3.65540200	2.51078300
Ν	5.94395600	-4.67889900	2.95609000
С	-0.78731000	1.30458900	-0.07965900
С	-0.87759700	-0.07561500	-0.23108200
С	0.29776800	-0.85391700	-0.34291700
С	1.52461900	-0.19082700	-0.23953300
Н	2.44801600	-0.74331400	-0.33133700

Ν	0.21483100	-2.23027100	-0.53361900
С	-1.00092500	-2.81947000	-0.85311500
С	-2.21985600	-2.09357000	-0.74323100
С	-3.41597200	-2.71076800	-1.15606100
С	-3.44833800	-4.01417600	-1.61281900
С	-2.25524500	-4.74057500	-1.66680500
С	-1.05516400	-4.15689100	-1.30262400
Н	-0.14842500	-4.73952000	-1.40214300
Н	-2.25575300	-5.76909700	-2.01819700
Н	-4.38581900	-4.46156300	-1.92835900
Н	-4.33490900	-2.13914400	-1.12240300
С	-2.20481200	-0.71313000	-0.24619300
Ν	-3.20043100	0.01716900	0.13620700
С	-4.49653500	-0.36053700	0.42063300
С	-5.56683600	0.26509500	-0.24903400
С	-6.87988600	-0.01489800	0.09323100
С	-7.16675200	-0.90856500	1.13807300
С	-6.10480200	-1.51494700	1.83011100
С	-4.79289300	-1.24746800	1.47737500
Н	-3.97538200	-1.71346900	2.01939900
Н	-6.31992300	-2.19822100	2.64647900
Н	-7.69594800	0.46368500	-0.44014300
Н	-5.34388100	0.96828100	-1.04612500
С	1.43124700	-3.04444000	-0.48547500
Н	2.09951200	-2.60640400	0.26126600
Н	1.15970300	-4.02544900	-0.08483700
С	2.14454100	-3.18908100	-1.83276600
н	2,47555700	-2.20064100	-2.17794300

Н	1.43155700	-3.54827500	-2.58649600
С	3.34048100	-4.13898200	-1.75621500
Н	4.03885900	-3.78399700	-0.98688000
Н	2.99963800	-5.12954800	-1.42254300
С	4.07262000	-4.27570900	-3.08910200
Н	4.91925700	-4.96579900	-3.00700600
Н	3.40631600	-4.65732300	-3.87213100
Н	4.46213300	-3.30853500	-3.42887100
Н	-1.73366700	1.82727200	-0.03185700
С	-8.51969700	-1.19100200	1.49682000
Ν	-9.62343600	-1.42261400	1.78695700
С	0.43649300	1.97520700	-0.01557500
С	1.62192100	1.18968400	-0.04260000

7 ZZ

Total Energy -2757.4176056

С	-2.67524300	2.37816700	-1.20928500
Н	-2.62748100	1.56614900	-1.94206900
Н	-2.71801300	3.30086300	-1.79503600
С	-3.92136300	2.22759100	-0.33112300
Н	-3.91590900	2.99796800	0.45050900
Н	-3.86959300	1.26805900	0.19597100
С	-5.23199800	2.30557200	-1.12330700
Н	-5.21584600	1.56659700	-1.93682400
Н	-6.05053000	1.99846500	-0.46110700
С	-5.54806800	3.68880200	-1.69293700
н	-5.58930400	4.44311000	-0.89721500

Н	-6.52071300	3.68929000	-2.19667400
Н	-4.80505200	4.01835400	-2.42865100
Ν	-1.40472600	2.39296700	-0.48095900
С	-0.90586400	3.59347800	0.00972400
С	-1.70266400	4.75757200	0.04798000
С	-1.19567300	5.94478100	0.54760900
С	0.11967400	6.02377700	1.02041000
С	0.91862000	4.89868000	0.96300300
С	0.43031400	3.67924900	0.46459000
С	1.33149200	2.53610900	0.31284300
С	0.65477400	1.23920700	0.14886000
С	-0.70648800	1.21115200	-0.25731900
С	-1.31477200	-0.03800400	-0.41469900
Н	-2.34697900	-0.09555900	-0.72987500
С	-0.65473100	-1.23907600	-0.14892600
С	0.70653900	-1.21102400	0.25723600
С	1.31482100	0.03813600	0.41462400
Н	2.34702500	0.09569700	0.72980700
Ν	1.40476500	-2.39284800	0.48087900
С	0.90589100	-3.59335100	-0.00980400
С	1.70270000	-4.75743800	-0.04810100
С	1.19570700	-5.94464000	-0.54774400
С	-0.11965000	-6.02363400	-1.02052200
С	-0.91859800	-4.89854100	-0.96308500
С	-0.43028800	-3.67911600	-0.46466200
С	-1.33146100	-2.53597800	-0.31289100
Ν	-2.60120200	-2.77961500	-0.37294700
С	-3.63894200	-1.96610700	0.02241300

С	-3.77420900	-1.51008000	1.34743300
С	-4.93221200	-0.89001700	1.80120100
С	-6.00471700	-0.70081500	0.93421200
С	-5.90374100	-1.13959200	-0.38216300
С	-4.74845700	-1.77568800	-0.81887500
F	-4.68471800	-2.19205800	-2.08739300
F	-6.91764200	-0.93669300	-1.22705500
F	-7.10627800	-0.06935700	1.34912900
F	-5.02117400	-0.47844100	3.06757400
F	-2.76763600	-1.69381900	2.20847200
Н	-1.95290700	-4.92175800	-1.29069000
Н	-0.50788700	-6.95613800	-1.41919100
Н	1.83975500	-6.81977300	-0.57802500
Н	2.73164800	-4.73180600	0.28830500
С	2.67527900	-2.37809100	1.20921200
Н	2.62761400	-1.56598300	1.94190400
Н	2.71792700	-3.30072400	1.79507000
С	3.92143000	-2.22782800	0.33104200
Н	3.91584300	-2.99830100	-0.45049600
Н	3.86983900	-1.26835000	-0.19616900
С	5.23204300	-2.30596400	1.12324600
Н	5.21603600	-1.56686800	1.93665700
Н	6.05064500	-1.99912300	0.46101000
С	5.54782200	-3.68917700	1.69307700
Н	5.58890400	-4.44360800	0.89746500
Н	6.52046500	-3.68979400	2.19681800
Н	4.80473400	-4.01846700	2.42883600
N	2.60123300	2.77973500	0.37291100

С	3.63895600	1.96617400	-0.02237700
С	3.77416500	1.50996900	-1.34734100
С	4.93214400	0.88983100	-1.80106900
С	6.00468200	0.70073800	-0.93409700
С	5.90376000	1.13968800	0.38222300
С	4.74849600	1.77584500	0.81889800
F	4.68480300	2.19237000	2.08736800
F	6.91768600	0.93687900	1.22710700
F	7.10621700	0.06920600	-1.34897000
F	5.02105000	0.47807900	-3.06738900
F	2.76755500	1.69359300	-2.20836100
Н	1.95292500	4.92190000	1.29061900
Н	0.50791000	6.95628600	1.41906800
Н	-1.83971500	6.81992000	0.57785800
Н	-2.73160100	4.73194700	-0.28845700

10 EE

Total energy -1949.9373194

С	0.13676500	3.62716100	0.97038400
Ν	-0.81860200	2.65955900	0.43056400
С	-0.40731300	1.34795300	0.20998100
С	0.93056900	0.96496400	0.33058500
С	1.34900900	-0.34932600	0.13313000
С	0.40730600	-1.34793600	-0.21000500
С	-0.93057600	-0.96494700	-0.33061000
Н	-1.71739000	-1.67493600	-0.55123800
С	-1.34901600	0.34934300	-0.13315600

С	-2.78293500	0.67095200	-0.21667300
С	-3.09156200	2.10524500	-0.27921400
С	-2.09752500	3.06049400	0.07332900
С	-2.43960500	4.42986300	0.04205400
С	-3.69645500	4.84302000	-0.36192100
С	-4.65807000	3.91224000	-0.76577500
С	-4.34613400	2.56694400	-0.72039100
Н	-5.08331600	1.84227900	-1.04266900
Н	-5.63320200	4.23723500	-1.11521400
Н	-3.92021900	5.90641900	-0.38462000
Н	-1.70665600	5.18387300	0.30028100
Ν	-3.60106600	-0.32926300	-0.26538700
С	-4.97340900	-0.33558300	-0.12883300
С	-5.60044600	0.08532500	1.06352400
С	-6.96818000	-0.04967300	1.23031600
С	-7.75919500	-0.60675300	0.21121700
С	-7.14150300	-1.03892900	-0.97390200
С	-5.77063600	-0.91846900	-1.13419900
Н	-5.29022400	-1.26704600	-2.04371600
Н	-7.74569300	-1.47790100	-1.76242800
Н	-7.43832600	0.27624000	2.15358300
Н	-4.99270900	0.51045900	1.85678200
Ν	0.81859400	-2.65954300	-0.43058800
С	2.09751800	-3.06047800	-0.07335600
С	3.09155500	-2.10522800	0.27918500
С	4.34613200	-2.56692400	0.72035000
С	4.65807100	-3.91222000	0.76573100
С	3.69645400	-4.84300100	0.36188400

С	2.43960100	-4.42984600	-0.04208400
Н	1.70665200	-5.18385700	-0.30030700
Н	3.92022100	-5.90640000	0.38458000
Н	5.63320700	-4.23721300	1.11516100
Н	5.08331600	-1.84225700	1.04262000
С	2.78292800	-0.67093600	0.21664700
Ν	3.60106200	0.32927500	0.26537200
С	4.97340800	0.33558300	0.12884700
С	5.77061900	0.91848600	1.13421600
С	7.14149100	1.03892900	0.97394500
С	7.75920500	0.60671500	-0.21114900
С	6.96820600	0.04961400	-1.23025000
С	5.60046700	-0.08536500	-1.06348500
Н	4.99274300	-0.51051600	-1.85674400
Н	7.43836900	-0.27632900	-2.15349700
Н	7.74566800	1.47791600	1.76247200
Н	5.29019100	1.26709100	2.04371300
С	-0.13677400	-3.62714500	-0.97040700
Н	-0.78667800	-3.09242800	-1.66962400
Н	0.42023200	-4.34333600	-1.58189000
С	-0.97303500	-4.35248800	0.08690400
Н	-1.51912900	-3.61484300	0.68852200
Н	-0.30671500	-4.87787900	0.78356800
С	-1.95899400	-5.34220400	-0.53619200
Н	-2.62252600	-4.80686700	-1.22984900
Н	-1.40880100	-6.07408100	-1.14515900
С	-2.79932500	-6.07514300	0.50692400
Н	-3.49689500	-6.77503400	0.03442400

Н	-2.16653100	-6.64816600	1.19519200
Н	-3.38835900	-5.37073700	1.10576000
Н	1.71738300	1.67495300	0.55121300
Н	-0.42024300	4.34335900	1.58185800
Н	0.78666200	3.09244700	1.66961000
С	0.97303600	4.35249600	-0.08692600
Н	1.51913400	3.61484600	-0.68853300
Н	0.30672300	4.87788300	-0.78359800
С	1.95899200	5.34221400	0.53617200
Н	1.40879500	6.07409700	1.14512900
Н	2.62251700	4.80688100	1.22983900
С	2.79933200	6.07514400	-0.50694300
Н	2.16654500	6.64816300	-1.19522000
Н	3.49690000	6.77503800	-0.03444200
Н	3.38837000	5.37073300	-1.10576900
С	9.17069000	0.73891100	-0.38113100
С	-9.17067600	-0.73896700	0.38122600
N	10.32217900	0.84522000	-0.51879700
Ν	-10.32216100	-0.84529100	0.51891400

 $10 \mathrm{EZ}$

Total energy -1949.9348575

С	1.60449100	1.37885500	-0.23008300
С	0.39927000	2.06281100	0.08731300
Ν	0.37552200	3.44665700	0.21014200
С	1.44091400	4.20270000	-0.25964200
С	1.33829700	5.60205400	-0.41139700

С	2.41151400	6.34311200	-0.87501200
С	3.62515900	5.72589700	-1.20124200
С	3.74358600	4.35889100	-1.04274200
С	2.67021600	3.57956300	-0.57953200
С	2.85377800	2.14564000	-0.34699700
Ν	4.07191600	1.70683500	-0.30874700
С	4.50612900	0.48589600	0.15741400
С	4.27164600	0.05026400	1.47544200
С	4.89068900	-1.07664100	2.00305400
С	5.77661000	-1.81336300	1.22183500
С	6.03380000	-1.40786300	-0.08389900
С	5.42236500	-0.26955600	-0.59433700
F	5.69304600	0.09476900	-1.85170000
F	6.86283000	-2.12385700	-0.84799400
F	6.34997800	-2.91764400	1.70763800
F	4.64299200	-1.45233200	3.25961800
F	3.43834400	0.74561000	2.25664100
Н	4.67166600	3.84184300	-1.26420300
Н	4.46092900	6.31272900	-1.57054200
Н	2.29690600	7.41761500	-0.99317200
Н	0.40867100	6.11262500	-0.19132600
С	-0.80549500	4.10479800	0.76936100
Н	-1.21177300	3.44844000	1.54503000
Н	-0.46364900	5.00219600	1.29453200
С	-1.89234000	4.46096500	-0.24880000
Н	-1.47553900	5.12742900	-1.01519900
Н	-2.21256500	3.55465500	-0.77791700
С	-3.09941000	5.12315300	0.41767400

Н	-2.77125200	6.02273100	0.95836200
Н	-3.51137300	4.44477800	1.17788600
С	-4.19530900	5.49757200	-0.57736200
Н	-4.56852200	4.61268500	-1.10614700
Н	-5.04643900	5.96695400	-0.07224100
Н	-3.82429400	6.20258100	-1.33100500
С	1.49110100	-2.74988100	-1.31113600
Ν	0.36196400	-2.11535600	-0.62723000
С	0.39707300	-0.75156500	-0.34765200
С	-0.77896500	-0.07702000	0.05627500
С	-2.05286700	-0.80258700	0.17649600
С	-1.92714100	-2.26060200	0.21698400
С	-0.72665500	-2.87759400	-0.23017300
С	-0.66367200	-4.28788500	-0.25096000
С	-1.71789300	-5.05549700	0.20934500
С	-2.87103000	-4.45240600	0.72180600
С	-2.96072800	-3.07435200	0.71703900
Н	-3.84641900	-2.59865000	1.12090600
Н	-3.68193300	-5.05464700	1.11974800
Н	-1.62865100	-6.13855500	0.19215300
Н	0.23163000	-4.79130500	-0.59280500
Ν	-3.11962900	-0.07236600	0.26779500
С	-4.43391800	-0.48080600	0.17507000
С	-4.95855500	-1.14893700	-0.94577800
С	-6.31948500	-1.38464400	-1.09410300
С	-7.21421500	-0.93929800	-0.12538900
С	-6.72983500	-0.26419600	0.99086200
С	-5.36753100	-0.02276400	1.12036300

Н	1.08318500	-3.54168600	-1.94473800
Н	1.91463400	-2.01315200	-2.00141900
С	2.57986200	-3.29187900	-0.38018800
Н	2.98763400	-2.46068000	0.20675600
Н	2.13217700	-3.98105700	0.34768600
С	3.71877700	-3.99574500	-1.12747300
Н	4.12712500	-3.32201900	-1.89394900
Н	4.53774700	-4.16810300	-0.41859400
С	3.33043300	-5.32729100	-1.77070600
Н	2.57285400	-5.20938400	-2.55468600
Н	4.20085900	-5.80274700	-2.23560300
Н	2.93407600	-6.02624900	-1.02363300
С	-0.75778200	1.30054600	0.25455700
С	1.56899200	0.00214900	-0.46829300
Н	-1.71232700	1.74901800	0.49759400
Н	2.49575200	-0.47970600	-0.74549800
F	-4.93412200	0.63985700	2.19735500
F	-7.57845900	0.16398700	1.92800100
F	-8.52184700	-1.16744100	-0.26046300
F	-6.77446300	-2.03049000	-2.17016800
F	-4.12727400	-1.58175600	-1.90000200

10ZZ

Total energy

-1949.9288255

с	3.04454600	-1.88179900	-1.21524200
Н	2.84994000	-1.08413300	-1.93935900
Н	3.22163600	-2.78254800	-1.81018600
С	4.27305100	-1.53711900	-0.36814100

Н	4.39782500	-2.28584900	0.42475000
Н	4.10259200	-0.58344800	0.14426100
С	5.55894200	-1.44640300	-1.19882400
Н	5.41066900	-0.73167500	-2.02070900
Н	6.34389800	-1.01626300	-0.56612300
С	6.05382700	-2.78036500	-1.75891600
Н	6.23309200	-3.50400200	-0.95401000
Н	6.99968800	-2.64890600	-2.29560700
Н	5.34503500	-3.23126600	-2.46368000
Ν	1.80715700	-2.10982600	-0.46366500
С	1.52644500	-3.38129100	0.02120000
С	2.51382000	-4.38955500	0.04669100
С	2.22313500	-5.65152000	0.53555100
С	0.94336800	-5.96200200	1.01041800
С	-0.03795700	-4.99102400	0.96790400
С	0.22773200	-3.70093300	0.47923300
С	-0.86190000	-2.73082400	0.34383700
С	-0.42562300	-1.33421900	0.16305700
С	0.91129300	-1.06920400	-0.24323100
С	1.29144500	0.26669400	-0.40952300
Н	2.30269200	0.50385800	-0.70957800
С	0.42562500	1.33423700	-0.16306800
С	-0.91129100	1.06922100	0.24321600
С	-1.29144300	-0.26667600	0.40951300
Н	-2.30268700	-0.50383700	0.70957800
Ν	-1.80715400	2.10984100	0.46366000
С	-1.52644300	3.38131000	-0.02119500
С	-2.51381800	4.38957300	-0.04668900

С	-2.22313200	5.65154000	-0.53554100
С	-0.94336300	5.96202600	-1.01040000
С	0.03796200	4.99104800	-0.96788800
С	-0.22772800	3.70095500	-0.47922500
С	0.86190300	2.73084300	-0.34383400
Ν	2.06808500	3.18454800	-0.43416200
С	3.26489500	2.62914800	-0.05662500
С	3.49240600	2.17697800	1.26357200
Н	2.66344300	2.16105900	1.96487600
С	4.75851700	1.79673000	1.67532900
С	5.84274500	1.84051600	0.78169000
С	5.62560200	2.28562300	-0.53380800
С	4.36317800	2.68141700	-0.94156100
Н	4.20161200	3.05582300	-1.94807600
Н	6.46069000	2.33172700	-1.22662700
Н	4.92080000	1.46470400	2.69675600
Н	1.05088100	5.19602300	-1.29905400
Н	-0.72406800	6.95156200	-1.40024800
Н	-3.00966700	6.40150700	-0.55568600
Н	-3.52113700	4.18207700	0.29131100
С	-3.04454400	1.88179800	1.21523200
Н	-2.84994000	1.08410300	1.93931800
Н	-3.22162600	2.78252500	1.81021100
С	-4.27305400	1.53716100	0.36812100
Н	-4.39784100	2.28594300	-0.42471900
Н	-4.10259200	0.58352600	-0.14434500
С	-5.55893800	1.44637600	1.19880900
Н	-5.41064900	0.73159900	2.02064900

Н	-6.34389100	1.01626400	0.56608700
С	-6.05384000	2.78029600	1.75898500
Н	-6.23312100	3.50397900	0.95412500
Н	-6.99969600	2.64878900	2.29567500
Н	-5.34505100	3.23116500	2.46377400
Ν	-2.06808100	-3.18452800	0.43417900
С	-3.26489400	-2.62914500	0.05662300
С	-3.49242000	-2.17705500	-1.26359900
Н	-2.66346900	-2.16118700	-1.96491700
С	-4.75853500	-1.79682400	-1.67536100
С	-5.84275000	-1.84054100	-0.78170200
С	-5.62558900	-2.28556600	0.53382100
С	-4.36316300	-2.68134900	0.94157900
Н	-4.20158500	-3.05569200	1.94811400
Н	-6.46066700	-2.33161800	1.22665600
Н	-4.92083100	-1.46486100	-2.69680700
Н	-1.05087500	-5.19599700	1.29907500
Н	0.72407300	-6.95153600	1.40027000
Н	3.00967000	-6.40148800	0.55569300
Н	3.52113600	-4.18206100	-0.29131900
С	7.14466800	1.43310600	1.20140100
С	-7.14467400	-1.43314400	-1.20141800
Ν	-8.20522800	-1.08743400	-1.53698300
Ν	8.20521900	1.08738500	1.53696100