## Supporting Information

## Selective Activation of Secondary C-H Bonds by an Iron Catalyst: Insight into Possibilities Created by the Use of a Carboxyl-Containing Bipyridine Ligand

*Shi Cheng, Jing Li, Xiaoxiao Yu, Chuncheng Chen, Hongwei Ji, Wanhong Ma,*<sup>\*</sup> *Jincai Zhao*<sup>\*</sup>

Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences,

Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China

whma@iccas.ac.cn; jczhao@iccas.ac.cn

## **Table of Contents**

| Title                                                                                                                      | Page  |
|----------------------------------------------------------------------------------------------------------------------------|-------|
| The UV-VIS spectrum of 1 and 2                                                                                             | S3    |
| The crystal structure of <b>2</b> and <b>3</b>                                                                             | S4    |
| Oxidation of different substrates under other stoichiometric ratios and mixed solvent ratios.                              | S5-S6 |
| Isotope distribution of cyclohexanol in $^{18}\mbox{O}$ labelled $\mbox{O}_2$ environment with $1$ as the catalyst         | S7    |
| Detection of $H_2O_2$ and organoperoxides with <b>1</b> as the catalyst                                                    | S8    |
| Comparison of regioselectivity during the oxidation of <i>cis</i> -1,2-dimethylcyclohexane by different catalytic systems. | S9    |
| The ESR signal with different iron catalysts                                                                               | S10   |
| References                                                                                                                 | S11   |



Figure S1. UV-VIS spectrum of 1 and 2. Dash line, 1. Real line, 2.



*Scheme S1*. The crystal structure of **2** and **3**. Hydrogen atoms are omitted for clarity. [From Ref. S1 and S2]

| Entry | Promoter         | Ι | ΤN  | A/K  |
|-------|------------------|---|-----|------|
| 1     | Fe"              | + | 0.4 | 0.60 |
| 2     | Fe <sup>ll</sup> | - | 0.4 | 0.60 |
| 3     | 2                | + | 0.6 | 0.58 |
| 4     | 2                | - | 0.3 | 0.65 |
| 5     | 3                | + | 0.1 | 0.33 |
| 6     | 3                | - | 0.1 | 0.33 |
| 8     | 1                | + | 4.5 | 0.73 |
| 9     | 1                | - | 1.3 | 0.52 |

*Table S1*. Oxidation of cyclohexane under other stoichiometric ratios and mixed solvent ratios<sup>[a]</sup>.

[a] Reaction conditions: 1.5 mM iron promoter, 150 mM alkane substrate and 150 mM  $H_2O_2$  in 2.5 mL CH<sub>3</sub>CN/H<sub>2</sub>O solution (CH<sub>3</sub>CN/H<sub>2</sub>O (v/v) = 40/60), 20 h reaction time.



*Figure S2.* Oxidation of different substrates under other stoichiometric ratios and mixed solvent ratios with **1** as a promoter. Reaction conditions: 1.5 mM iron promoter, 6 mM alkane substrate and 205 mM  $H_2O_2$  (CH<sub>3</sub>CN/H<sub>2</sub>O (v/v) = 40/60), 20 h reaction time. MC=methylcyclohexane, EC=ethylcyclohexane, TC=tert-butylcyclohexane, c-D=*cis*-decalin, t-D=*trans*-decalin.



*Figure S3.* Isotope distribution of cyclohexanol in an <sup>18</sup>O labelled  $O_2$  environment with **1** as the catalyst performed with irradiation (a) and without irradiation (b).



*Figure S4.* Detection of  $H_2O_2$  and organoperoxides with 1.5 M cyclohexane and 60 mM  $H_2O_2$  in a 2.5 mL CH<sub>3</sub>CN/H<sub>2</sub>O (60/40) solution with 1.5 mM **1** as the iron catalyst after 5 h of visible irradiation. Curve a was obtained via the addition of phosphate buffer (pH 6.8), DPD (N,N'-dialkyl-p-phenylenediamine), and POD (Horseradish peroxidase) to the solution. Curve b was obtained through the same procedure except that catalase (0.1 mL, 0.5%; activity greater than 2.0 U mg<sup>-1</sup>) was added prior to the other reagents (DPD, POD).

*Table S2.* Comparison of regioselectivity during the oxidation of *cis*-1,2-dimethylcyclohexane by different catalytic systems.



| entry | system                                                                                                                              | [2°]/[3°] | [cis]/[trans] | Ref.     |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|----------|
| 1     | 1/H <sub>2</sub> O <sub>2</sub> (this work)                                                                                         | 78/22     | 55/45         |          |
| 2     | s-MMO <sup>[a]</sup>                                                                                                                | 80/20     | 70/30         | S3       |
| 3     | [ <sup>n</sup> Bu <sub>4</sub> N][Os(N)(O) <sub>3</sub> ]/FeCl <sub>3</sub> /Cl <sub>2</sub> PyO <sup>[b]</sup>                     | 40/60     | >99/1         | S4       |
| 4     | Fe(TPFPP)(ClO <sub>4</sub> )/m-CPBA <sup>[c]</sup>                                                                                  | 27/73     | >99/1         | S5       |
| 5     | [Fe(II)(TPA)(CH <sub>3</sub> CN) <sub>2</sub> ](ClO <sub>4</sub> ) <sub>2</sub> /H <sub>2</sub> O <sub>2</sub> <sup>[d]</sup>       | 25/75     | >99/1         | S6       |
| 6     | [Mn <sub>2</sub> (Me <sub>3</sub> TACN) <sub>2</sub> O <sub>3</sub> ](PF <sub>6</sub> ) <sub>2</sub> /peracetic acid <sup>[e]</sup> | 25/75     | 95/5          | S7       |
| 7     | [Mn <sub>2</sub> (Me <sub>3</sub> TACN) <sub>2</sub> O <sub>3</sub> ](PF <sub>6</sub> ) <sub>2</sub> /H <sub>2</sub> O <sub>2</sub> | 17/83     | 86/14         | S8       |
| 8     | [Fe(II)(N <sub>4</sub> Py)(CH <sub>3</sub> CN)](ClO <sub>4</sub> ) <sub>2</sub> /H <sub>2</sub> O <sub>2</sub> <sup>[f]</sup>       | <1/99     | 60/40         | S9       |
| 9     | HO                                                                                                                                  | <1/99     | 55/45         | S10, S11 |
| 10    | CH <sub>3</sub> ReO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub>                                                                     | <1/99     | >99/1         | S12      |
| 11    | Methyl(trifluoromethyl)dioxirane                                                                                                    | <1/99     | >99/1         | S13      |
|       |                                                                                                                                     |           |               |          |

[a] s-MMO = soluble methane monooxygenases, *cis*-1,3-dimethylcyclohexane was used rather than *cis*-1,2-dimethylcyclohexane.

[b]  $Cl_2PyO = 2,6$ -dichloropyridine N-oxide.

[c] TPFPP = meso-tetrakis(pentafluorophenyl)porphinato dianion.

[d] TPA = *tris*-(2-pyridylmethyl)amine.

[e]  $Me_3TACN = 1,4,7$ -trimethyl-1,4,7-triazacyclononane.

[f] N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine.



*Figure S5.* DMPO spin-trapping ESR spectra of different iron catalytic reactions under visible irradiation. 1.5 M cyclohexane, 60 mM  $H_2O_2$  in a 2.5 mL CH<sub>3</sub>CN/H<sub>2</sub>O (60/40) solution with (a) 1.5 mM Fe(ClO<sub>4</sub>)<sub>2</sub>, (b) 1.5 mM **1**, respectively. Irradiation time: 5 min. (four-fold peaks with intensity of 1: 2: 2: 1 labelled by "\*" are attributed to DMPO-OH, those peaks unlabeled are attributed to carbon centred or oxygen centred alkyl radical captured by DMPO)

## References

- S1. J. Heilmann, H. W. Lerner, M. Bolte, Acta. Cryst. 2006, 62, 1477.
- S2. A. Diebold, K. S. Hagen, Inorg. Chem, 1998, 37, 215.
- S3. J. Green, H. Dalton, J. Bio. Chem. 1989, 17698.
- S4. S. M. Yiu, Z. B. Wu, C. K. Mak, T. C. Lau, J. Am. Chem. Soc. 2004, 126, 14921.
- S5. W. Nam, J. Y. Ryu, I. Kim, C. Kim, Tetrahedron Lett. 2002, 43, 5487.
- S6. C. Kim, K. Chen, J. Kim, L. Que, Jr., J. Am. Chem .Soc. 1997, 119, 5964.
- S7. J. R. L. Smith, G. B. Shul'pin, Tetrahedron Lett. 1998, 4909.
- S8. G. B. Shul'pin, J. R. L. Smith, Russ. Chem. Bull. 1998, 47, 2379.
- S9. G. Roelfes, M. Lubben, R. Hage, L. Que, Jr., B. L. Feringa, Chem. Eur. J. 2000, 6, 2152.
- S10. K. Chen, L. Que, Jr., J. Am. Chem .Soc. 2001, 123, 6327.
- S11. S. Miyajima, O. Simamura, Bull. Chem. Soc. Jpn. 1975, 48, 526.
- S12. G. Bianchini, M. Crucianelli, F. D. Angelis, V. Neri, R. Saladino, *Tetrahedron Lett.* 2005, 46, 2427.
- S13. R. Mello, M. Fiorentino, C. Fusco, R. Cursi, J. Am. Chem. Soc. 1989, 111, 6749.