Supplementary information

Synthesis of new ω -amino- and ω -azidoalkyl carboranes

Marina Yu. Stogniy¹, Igor B. Sivaev¹*, Ivan A. Godovikov¹, Zoya A. Starikova¹, Vladimir I. Bregadze¹ and Shicheng Qi²

 ¹ A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991, Moscow, Russia
² College of Materials, Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China

Experimental

S2-S11

Fig. S1. Hydrogen bonds in the structure of 7-NH₃CH₂CH₂CH₂S-7,8-nido-

 $C_2B_9H_{11}*1.5N_2H_4$ (5a).

Fig. S2. Association of dimers in the crystal structure of 7-NH₃CH₂CH₂CH₂S-7,8-nido-

 $C_2B_9H_{11}{}^{*}1.5N_2H_4\ \textbf{(5a)}.$

Fig S3. A fragment of crystal structure of 7-NH₃CH₂CH₂CH₂S-7,8-nido-

 $C_2B_9H_{11}*1.5N_2H_4$ (5a).

Table 1. Parameters of the N1-H...N hydrogen bonds in the structure of 7-NH₃CH₂CH₂CH₂S-7,8-*nido*-C₂B₉H₁₁*1.5N₂H₄ (**5a**).

Experimental

Materials, instruments and general procedures

The triethylammonium salt of 1-mercapto-*ortho*-carborane was prepared according to our previous work procedure¹. All reactions were carried out in air. Thinlayer chromatograms (Merck F254 silica gel on aluminium plates) were visualized using 0.1% PdCl₂ in 3 M HCl(aq). Acros organics silica gel (0.060–0.200 mm) was used for column chromatography. The ¹H, ¹¹B, and ¹¹B{¹H}, ¹³C NMR spectra were collected using Bruker Avance-400 spectrometer. The residual signal of the NMR solvent relative to tetramethylsilane was taken as the internal reference for ¹H NMR and ¹³C NMR spectra. ¹¹B NMR spectra were referenced using a BF₃ Et₂O external standard. Infrared spectra were recorded on Specord IR 75 and Infralum FT-801 spectrophotometers. Mass spectra were obtained using Kratos MS 890 mass spectrometer. Elemental analyses were performed at the Laboratory of Microanalysis of the Institute of Organoelement Compounds.

Synthesis of 1-C₆H₄(CO)₂NCH₂S-1,2-C₂B₁₀H₁₁ (1).

To solution of triethylammonium salt of 1-mercapto-*ortho*-carborane (0.40 g, 1.5 mmol) in ethanol (50 ml), *N*-(bromomethyl)phthalimide (0.35 g, 1.5 mmol) was added, stirred at room temperature for 15 min and heated under reflux for 20 h. The reaction mixture was cooled and evaporated to dryness *in vacuo*. The residue was treated with diethyl ether (50 ml) and water (50 ml). The organic layer was separated, washed with water (2 x 30 ml) and evaporated *in vacuo*. The crude product was purified using column chromatography on silica with CHCl₃ as eluent. The solvent was evaporated under vacuum to yield a white residue (0.31 g, 64% yield). ¹H NMR (CDCl₃): δ 7.91 (2H, m, *CH*_{ar}), 7.81 (2H, m, *CH*_{ar}), 5.1 (2H, s, CH₂), 3.92 (1H, s, *CH*_{carb}), 3.0–1.3 (10H, br s, B*H*). ¹³C NMR (CDCl₃): δ 166.5, 134.8, 131.6, 124.0, 72.8, 67.6, 42.4. ¹¹B NMR (CDCl₃): δ -1.3 (1B, d, *J* = 154 Hz), -4.5 (1B, d, *J* = 140 Hz), -8.6 (2B, d, *J* = 142 Hz), -9.6 (2B, d, *J* = 147 Hz), -12.4 (4B, d, *J* = 167 Hz). IR (Nujol, cm⁻¹): 2639, 2611, 2588,

2558 (v_{B-H}), 1738, 1726 ($v_{C=O}$). MS *m*/*z* for C₁₁H₁₇B₁₀NO₂S: calcd 335.4, obsd 334.4 [M-H]⁺.

Synthesis of 1-C₆H₄(CO)₂NCH₂CH₂S-1,2-C₂B₁₀H₁₁ (2).

The procedure was analogous to that described for synthesis of **1** using triethylammonium salt of 1-mercapto-*ortho*-carborane (0.30 g, 1.1 mmol) in ethanol (30 ml) and N-(2-bromoethyl)phthalimide (0.28 g, 1.1 mmol) to yield a white residue (0.25 g, 68% yield). ¹H NMR (CDCl₃): δ 7.92 (2H, m, CH_{ar}), 7.78 (2H, m, CH_{ar}), 4.02 (1H, s, CH_{carb}), 3.96 (2H, t, J = 7.1 Hz, CH_2 N), 3.25 (2H, t, J = 7.1 Hz, SCH_2), 3.0–1.2 (10H, br s, BH). ¹³C NMR (CDCl₃): δ 168.0, 134.4, 131.7, 123.6, 74.1, 67.2, 36.7, 35.3. ¹¹B NMR (CDCl₃): δ -1.4 (1B, d, J = 155 Hz), -4.8 (1B, d, J = 159 Hz), -8.9 (4B, d, J = 147 Hz), -12.4 (4B, d, J = 163 Hz). IR (Nujol, cm⁻¹): 2656, 2605, 2566 (v_{B-H}), 1770, 1721, 1708 (v_{C=O}). MS *m*/*z* for C₁₂H₁₉B₁₀NO₂S: calcd 349.4, obsd 349.3 [M]⁺.

Synthesis of 1-C₆H₄(CO)₂NCH₂CH₂CH₂S-1,2-C₂B₁₀H₁₁ (3).

To solution of triethylammonium salt of 1-mercapto-*ortho*-carborane (1.00 g, 3.6 mmol) in ethanol (50 ml), *N*-(3-bromopropylphthalimide) (0.97 g, 3.6 mmol) was added, stirred at room temperature for 15 min and heated under reflux for 4 h. The reaction mixture was cooled and evaporated to dryness *in vacuo*. The residue was treated with diethyl ether (50 ml) and water (50 ml). The organic layer was separated, washed with water (2 x 30 ml) and evaporated *in vacuo*. The residue was purified by recrystallization from ethanol to yield white solid (1.19 g, 91%). ¹H NMR (CDCl₃): δ 7.77 (2H, m, *CH*_{ar}), 7.75 (2H, m, *CH*_{ar}), 3.98 (1H, s, *CH*_{carb}), 3.78 (2H, t, *J* = 7.0 Hz, *CH*₂N), 3.0–1.3 (10H, br s, B*H*), 2.97 (2H, t, *J* = 7.1 Hz, SC*H*₂), 1.99 (2H, m, SCH₂C*H*₂). ¹³C NMR (CDCl₃): δ 168.3, 134.2, 131.9, 123.4, 74.5, 68.1, 36.5, 34.4, 27.5. ¹¹B NMR (CDCl₃): δ -1.5 (1B, d, *J* = 165 Hz), -5.1 (1B, d, *J* = 153 Hz), -8.8 (2B, d, *J* = 144 Hz), -9.8 (2B, d, *J* = 152 Hz), -12.6 (4B, d, *J* = 165 Hz). IR (Nujol, cm⁻¹): 2603, 2574 (v_{B-H}), 1708 (v_{C=O}). MS *m/z* for C₁₃H₂₁B₁₀NO₂S: calcd 363.5, obsd 363.1 [M]⁺.

Synthesis of 7-NH₃CH₂CH₂S-7,8-C₂B₉H₁₁*1.4N₂H₄ (4a).

To solution of **2** (0.10 g, 0.3 mmol) in ethanol (20 ml) hydrazine monohydrate (0.30 g, 6.0 mmol) was added. The reaction mixture was heated under reflux for 30 min, cooled to room temperature and filtered. The solvent was evaporated *in vacuo* to give a white residue (0.06 g, 97%). ¹H NMR (acetone-d₆): δ 3.25 (1H, m, SCH₂CH₂NH₃), 3.21 (1H, m, SCH₂CH₂NH₃), 3.09 (1H, m, SCH₂CH₂NH₃), 2.75 (1H, m, SCH₂CH₂NH₃), 2.4-(-0.3) (9H, br s, BH), 1.99 (1H, s, CH_{carb}), -2.75 (1H, br s, BHB). ¹³C NMR (acetone-d₆): δ 55.4, 52.9, 41.6, 38.2. ¹¹B NMR (acetone-d₆): δ -9.6 (1B, d, *J* = 137 Hz), 11.0 (1B, d, *J* = 139 Hz), -14.8 (1B, d, *J* = 157 Hz), -16.4 (1B, d, *J* = 141 Hz), -18.0 (2B, d, *J* = 151 Hz), -21.6 (1B, d, *J* = 156 Hz), -32.7 (1B, dd, *J* = 146, 57 Hz), -36.5 (1B, d, *J* = 137 Hz). IR (Nujol, cm⁻¹): 3393, 3389, 3387, 3277, 3153 (v_{N-H}), 2523 (v_{B-H}). MS *m*/*z* for: calcd 209.5, obsd 208.2 [M-H]⁺. Anal. Calc. for C₄H_{23.6}B₉N_{3.8}S: C, 18.88; H, 9.37; N, 20.33; B, 38.24. Found: C, 18.72; H, 9.33; N, 20.43; B, 38.25%.

Synthesis of (Me₃NH)[7-NH₂CH₂CH₂S-7,8-C₂B₉H₁₁] (4).

To solution of **4a** (0.05 g, 0.20 mmol) in water (10 ml) solution of trimethylamine hydrochloride (0.10 g, 1.00 mmol) in water (5 ml) was added. The white precipitate was filtered, washed with water (5 ml), and dried overnight over P₂O₅ to give the product **4** (0.05 g, 95%). ¹H NMR (CD₃OD): δ 3.21 (1H, m, SCH₂CH₂NH₂), 3.13 (1H, m, SCH₂CH₂NH₂), 3.06 (1H, m, SCH₂CH₂NH₂), 2.72 (1H, m, SCH₂CH₂NH₂), 2.40 (9H, s, N(CH₃)₃), 2.2-(-0.4) (9H, br s, BH), 2.00 (1H, s, CH_{carb}), -2.85 (1H, br s, BHB). ¹¹B NMR (CD₃OD): δ -9.9 (1B, d, *J* = 142 Hz), 11.5 (1B, d, *J* = 149 Hz), -14.8 (1B, d, *J* = 157 Hz), -16.3 (1B, d, *J* = 151 Hz), -17.5 (1B, d, *J* = 138 Hz), -18.4 (1B, d, *J* = 151 Hz), -21.2 (1B, d, *J* = 154 Hz), -32.6 (1B, d, *J* = 136 Hz), -36.7 (1B, d, *J* = 142 Hz).

Synthesis of 7-NH₃CH₂CH₂CH₂S-7,8-C₂B₉H₁₁*1.2N₂H₄ (5a).

The procedure was analogous to that described for synthesis of **4a** using **3** (0.68 g, 1.9 mmol) and hydrazine monohydrate (1.88 g, 38.0 mmol) in ethanol (50 ml) to yield a

white residue (0.46 g, 96% yield). ¹H NMR (acetone-d₆): δ 3.03 (2H, t, J = 7.1 Hz, $SCH_2CH_2CH_2NH_3),$ 2.96 (1H, m, $SCH_2CH_2CH_2NH_3$), 2.61 (1H, m, SCH₂CH₂CH₂NH₃), 2.5-(-0.5) (9H, br s, BH), 2.06 (1H, m, SCH₂CH₂CH₂NH₂), 2.01 (1H, s, CH_{carb}), 1.91 (1H, m, SCH₂CH₂CH₂NH₂), -2.75 (1H, br s, BHB). ¹³C NMR (acetone-d₆): δ 55.5, 52.6, 40.8, 33.0, 27.7. ¹¹B NMR (acetone-d₆): δ -9.7 (1B, d, J = 136 Hz), 10.6 (1B, d, J = 136 Hz), -14.8 (1B, d, J = 161 Hz), -17.2 (3B, d, J = 139 Hz), -21.9 (1B, d, J = 146 Hz), -32.8 (1B, dd, J = 133, 46 Hz), -36.5 (1B, d, J = 140 Hz). IR (Nujol, cm⁻¹): 3359, 3349, 3330, 3329 (v_{N-H}), 2577, 2550, 2537, 2497, 2475 (v_{B-H}). MS *m/z* for $C_5H_{24}B_9N_3S$: calcd 255.6, obsd 222.2 $[M-N_2H_5]^+$. Calc. for $C_5H_{24,8}B_9N_3AS$: C, 22.92; H, 9.56; N, 18.18; B, 37.13. Found: C, 22.78; H, 9.64; N, 18.24; B, 37.18%.

Synthesis of (Me₃NH)[7-NH₂CH₂CH₂CH₂S-7,8-C₂B₉H₁₁] (5).

To solution of **5a** (0.38 g, 1.5 mmol) in water (30 ml) solution of trimethylamine hydrochloride (0.50 g, 5.00 mmol) in water (10 ml) was added. The white precipitate was filtered, washed with water (10 ml), and dried overnight over P₂O₅ to give the product **3a** (0.38 g, 97%). ¹H NMR (CD₃OD): δ 3.03 (2H, t, *J* = 7.1 Hz, SCH₂CH₂CH₂CH₂NH₂), 2.98 (1H, m, SCH₂CH₂CH₂CH₂NH₂), 2.61 (1H, m, SCH₂CH₂CH₂NH₂), 2.5-(-0.5) (9H, br s, BH), 2.33 (9H, s, N(CH₃)₃), 2.02 (1H, m, SCH₂CH₂CH₂NH₂), 1.98 (1H, s, CH_{carb}), 1.92 (1H, m, SCH₂CH₂CH₂CH₂NH₂), -2.85 (1H, br s, BHB). ¹¹B NMR (CD₃OD): δ -10.2 (1B, d, *J* = 135 Hz), -11.2 (1B, d, *J* = 134 Hz), -14.8 (1B, d, *J* = 158 Hz), -17.1 (2B, d, *J* = 151 Hz), -17.7 (1B, d, *J* = 138 Hz), -21.7 (1B, d, *J* = 151 Hz), -32.8 (1B, d, *J* = 130 Hz), -36.7 (1B, d, *J* = 142 Hz).

Synthesis of 1-(C₆H₄(2-CH₂OH)(CO)NHCH₂CH₂CH₂S)-1,2-C₂B₁₀H₁₁ (6).

To solution of **3** (0.29 g, 0.8 mmol) in 2-propanol (25 ml) and water (5 ml) sodium borohydride (0.15 g, 3.9 mmol) was added. The suspension was stirred for 20 h. The solvent was evaporated and the residue was extracted with hot water and Et₂O. The organic layer was evaporated to dryness *in vacuo* to give white precipitate (0.07 g, 24% yield). ¹H NMR (DMSO-d₆): δ 9.96 (1H, s, NH), 7.53 (1H, m, CH_{ar}), 7.43 (2H, m,

 CH_{ar}), 7.32 (1H, m, CH_{ar}), 5.42 (1H, s, OH), (2 H, s, CH_2OH), 3.88 (1H, s, CH_{carb}), 3.29 (2H, t, J = 7.0 Hz, CH_2N), 3.04 (2H, t, J = 7.0 Hz, SCH_2), 3.0–1.0 (10H, br s, BH), 1.80 (2H, m, SCH_2CH_2). ¹¹B NMR (DMSO-d₆): δ -2.3 (1B, d, J = 168 Hz), -5.8 (1B, d, J = 149 Hz), -9.6 (4B, d, J = 151 Hz), -12.4 (4B, d, J = 150 Hz).

Synthesis of 1-(2-OC₅H₉)OCH₂CH₂S-1,2-C₂B₁₀H₁₁ (7).

To solution of the triethylammonium salt of 1-mercapto-ortho-carborane (1.50 g, 5.4 mmol) in ethanol (50 ml), 2-(2-bromoethoxy)tetrahydropyran (1.13 g, 5.4 mmol) was added, stirred at room temperature for 15 min and heated under reflux for 30 h. The reaction mixture was cooled and evaporated to dryness in vacuo. The residue was treated with diethyl ether (50 ml) and water (50 ml). The organic layer was separated, washed with water (2 x 30 ml), dried over Na₂SO₄ and evaporated *in vacuo*. The crude product was purified using column chromatography on silica with CHCl₃ as eluent. The solvent was evaporated under vacuum to yield a colorless oil (1.12 g, 68% yield). ¹H NMR $(CDCl_3)$: δ 4.61 (1H, t, J = 6.9 Hz, $OCH(O)CH_2$), 3.91 (1H, m, SCH_2CH_2O), 3.88 (1H, m, CH₂O), 3.81 (1H, s, CH_{carb}), 3.61 (1H, m, SCH₂CH₂O), 3.53 (1H, m, CH₂O), 3.17 $(2H, t, J = 7.1 \text{ Hz}, \text{SCH}_2), 3.0-1.4 (10H, \text{ br s}, \text{BH}), 1.81 (1H, m, \text{CHCH}_2\text{CH}_2), 1.70 (1H, m)$ m, CHCH₂CH₂), 1.74 (4H, m, CH₂CH₂CH₂). ¹³C NMR (CDCl₃): δ 98.5, 68.3, 65.5, 62.3, 60.6, 39.9, 37.3, 30.3, 25.3. ¹¹B NMR (CDCl₃): δ -1.6 (1B, d, J = 149 Hz), -5.0 (1B, d, J = 154 Hz), -8.8 (2B, d, J = 142 Hz), -9.7 (2B, d, J = 138 Hz), -12.5 (4B, d, J = 138 Hz), -12.5163 Hz). IR (neat, cm⁻¹): 2597 (v_{B-H}). MS *m*/*z* for C₉H₂₄B₁₀O₂S: calcd 304.4, obsd 304.3 $[M]^+$.

Synthesis of 1-HOCH₂CH₂S-1,2-C₂B₁₀H₁₁ (8).

Compound 7 (0.9 g, 2.9 mmol) was dissolved in methanol (30 ml) and *para*toluenesulfonic acid (1.12 g, 5.9 mmol) was added. The reaction mixture was stirred for 1 h at room temperature and the solvent was evaporated *in vacuo*. The residue was treated with chloroform (50 ml) and water (50 ml). The organic layer was separated and evaporated *in vacuo*. The crude product was purified using column chromatography on silica with CHCl₃ as eluent to give yellow oil (0.56 g, 88% yield). ¹H NMR (acetone-d₆): δ 4.81 (1H, s, CH_{carb}), 3.77 (2H, t, J = 7.1 Hz, CH₂O), 3.18 (2H, t, J = 7.1 Hz, SCH₂), 3.0–1.4 (10H, br s, BH). ¹³C NMR (acetone-d₆): δ 75.7, 68.7, 60.0, 39.9. ¹¹B NMR (aceton-d₆): δ -2.1 (1B, d, J = 151 Hz), -5.6 (1B, d, J = 147 Hz), -9.4 (4B, d, J = 156 Hz), -12.0 (2B, d, J = 161 Hz), -12.5 (2B, d, J = 163 Hz). IR (neat, cm⁻¹): 3357 (v_{O-H}), 2599 (v_{B-H}). MS *m*/*z* for C₄H₁₆B₁₀OS: calcd 220.3, obsd 220.1 [M]⁺.

Synthesis of 1-N₃CH₂CH₂S-1,2-C₂B₁₀H₁₁ (9).

A mixture of **8** (0.36 g, 1.6 mmol), sodium azide (0.13 g, 1.9 mmol) and PPh₃ (0.9 g, 3.4 mmol) in 8 ml of CCl₄-DMF (4:1) was heated under reflux for 5 h. After total disappearance of starting materials (monitored by TLC), reaction mixture was cooled to room temperature and 5 ml of H₂O was added. After stirring for 10 min, reaction mixture was diluted with ether (20 ml) and washed with water. The ether fraction was separated and evaporated *in vacuo*. The crude product was purified using column chromatography on silica with ethyl acetate as eluent to give colorless oil (0.23 g, 58% yield). ¹H NMR (acetone-d₆): δ 4.86 (1H, s, CH_{carb}), 3.84 (2H, t, *J* = 7.1 Hz, CH₂N₃), 3.42 (2H, t, *J* = 7.1 Hz, SCH₂), 3.1–1.3 (10H, br s, BH). ¹³C NMR (acetone-d₆): δ 75.0, 68.4, 50.1, 37.9. ¹¹B NMR (acetone-d₆): δ -1.9 (1B, d, *J* = 151 Hz), -5.3 (1B, d, *J* = 149 Hz), -9.5 (4B, d, *J* = 159 Hz), -12.3 (4B, d, *J* = 158 Hz). IR (neat, cm⁻¹): 2601 (v_{B-H}), 2107 (v_{N₃}). MS *m/z* for C₄H₁₅B₁₀N₃S: calcd 245.3, obsd 245.2 [M]⁺.

Synthesis of 1-ClCH₂CH₂CH₂S-1,2-C₂B₁₀H₁₁ (10).

To solution of the triethylammonium salt of 1-mercapto-*ortho*-carborane (2.00 g, 7.2 mmol) in ethanol (50 ml), BrCH₂CH₂CH₂Cl (1.14 g, 7.2 mmol) was added. The reaction mixture was heated under reflux for 30 h, cooled and evaporated to dryness *in vacuo*. The residue was treated with diethyl ether (50 ml) and water (50 ml). The organic layer was separated, dried over Na₂SO₄ and evaporated *in vacuo*. The crude product was purified using column chromatography on silica with CH₂Cl₂ as eluent. The solvent was evaporated under vacuum to yield a colorless oil (1.36 g, 75% yield). ¹H NMR (CDCl₃):

δ 3.77 (1H, s, CH_{carb}), 3.62 (2H, t, J = 7.0 Hz, CH₂Cl), 3.11 (2H, t, J = 7.1 Hz, SCH₂), 2.9–1.3 (10H, br s, BH), 2.08 (2H, m, J = 6.9 Hz, SCH₂CH₂). ¹³C NMR (CDCl₃): δ 74.3, 68.2, 42.7, 34.1, 31.1 ¹¹B NMR (CDCl₃): δ -1.5 (1B, d, J = 149 Hz), -4.9 (1B, d, J = 142 Hz), -8.7 (2B, d, J =149 Hz), -9.8 (2B, d, J =153 Hz), -12.5 (4B, d, J = 165 Hz). IR (neat, cm⁻¹): 2590 (v_{B-H}). MS *m*/*z* for C₅H₁₇B₁₀ClS: calcd 252.8, obsd 252.1 [M]⁺.

Synthesis of 1-ICH₂CH₂CH₂S-1,2-C₂B₁₀H₁₁ (11).

To a solution of **10** (1.20 g, 4.8 mmol) in acetone (40 ml) sodium iodide (8.92 g, 48.0 mmol) was added. The reaction mixture was heated under reflux for 40 h. The precipitate formed during reaction was filtered out and the solvent was evaporated under vacuum to yield yellow oil (1.58 g, 96% yield). ¹H NMR (CDCl₃): δ 3.77 (1H, s, *CH*_{carb}), 3.23 (2H, t, *J* = 7.1 Hz, *CH*₂I), 3.05 (2H, t, *J* = 7.1 Hz, S*CH*₂), 2.8–1.3 (10H, br s, B*H*), 2.09 (2H, m, *J* = 7.0 Hz, S*CH*₂*CH*₂). ¹³C NMR (CDCl₃): δ 74.3, 68.2, 37.6, 31.5, 23.4 ¹¹B NMR (CDCl₃): δ -1.6 (1B, d, *J* = 146 Hz), -4.9 (1B, d, *J* = 153 Hz), -8.7 (2B, d, *J* = 164 Hz), -9.8 (2B, d, *J* = 168 Hz), -12.6 (4B, d, *J* = 168 Hz). IR (neat, cm⁻¹): 2596 (v_{B-H}). MS *m*/*z* for C₅H₁₇B₁₀IS: calcd 244.3, obsd 244.1 [M]⁺.

Synthesis of 1-N₃CH₂CH₂CH₂S-1,2-C₂B₁₀H₁₁ (12).

To solution of **11** (0.65 g, 1.9 mmol) in acetone (30 ml) NaN₃ (0.73 g, 11.3 mmol) was added. The reaction mixture was heated under reflux for 20 h, cooled to room temperature, filtered and concentrated to dryness *in vacuo*. The residue was treated with diethyl ether (50 ml) and water (50 ml). The organic layer was separated and evaporated *in vacuo* to yield colorless oil (0.42 g, 87% yield). ¹H NMR (acetone-d₆): δ 4.83 (1H, s, CH_{carb}), 3.51 (2H, t, J = 6.9 Hz, CH_2N_3), 3.13 (2H, t, J = 7.0 Hz, SCH_2), 2.9–1.4 (10H, br s, BH), 1.92 (2H, m, J = 6.9 Hz, SCH_2CH_2). ¹³C NMR (aceton-d₆): δ 74.4, 68.3, 49.7, 34.2, 27.9 ¹¹B NMR (acetone-d₆): δ -2.0 (1B, d, J = 149 Hz), -5.4 (1B, d, J = 145 Hz), -9.4 (4B, d, J = 140 Hz), -12.4 (4B, d, J = 159 Hz). IR (neat, cm⁻¹): 2597 (v_{B-H}), 2101 (v_{N₃}). MS *m*/*z* for C₅H₁₇B₁₀N₃S: calcd 259.1, obsd 258.9 [M]⁺.

Synthesis of NH₄[7-N₃CH₂CH₂S-7,8-C₂B₉H₁₁] (13).

A mixture of **9** (0.07 g, 0.3 mmol) and sodium formate (0.08 g, 1.3 mmol) in methanol (7 ml) was heated under reflux for 5 h. The reaction was filtered and evaporated *in vacuo*. The residue was treated with CH₂Cl₂ (10 ml) and water (10 ml). The organic layer was evaporated under vacuum to yield yellow oil (0.03 g, 43% yield). ¹H NMR (acetone-d₆): δ 3.63 (1H, m, SCH₂CH₂N₃), 3.45 (1H, m, SCH₂CH₂N₃), 3.11 (1H, m, SCH₂CH₂N₃), 2.93 (1H, m, SCH₂CH₂N₃), 2.4-(-0.5) (9H, br s, BH), 2.00 (1H, s, CH_{carb}), -2.73 (1H, br s, BHB). ¹¹B NMR (acetone-d₆): δ -12.4 (2B, d, *J* = 135 Hz), -14.8 (1B, d, *J* = 161 Hz), -16.9 (3B, d, *J* = 149 Hz), -21.7 (1B, d, *J* = 148 Hz), -32.6 (1B, dd, *J* = 142, 55 Hz), -36.3 (1B, d, *J* = 140 Hz). IR (neat, cm⁻¹): 2533 (v_{B-H}), 2102 (v_{N₃}). Anal. Calc. for C₄H₁₉B₉N₄S: C, 19.02; H, 7.58; N, 22.18; B, 38.52. Found: C, 18.94; H, 7.63; N, 22.25; B, 38.57%.

Synthesis of NH₄[7-N₃CH₂CH₂CH₂S-7,8-C₂B₉H₁₁] (14).

The procedure was analogous to that described for synthesis of **10** using **13** (0.32 g, 1.2 mmol) and sodium formate (0.31 g, 4.9 mmol) methanol (35 ml) to yield a yellow oil (0.15 g, 47% yield). ¹H NMR (acetone-d₆): δ 3.48 (2H, t, J = 7.1 Hz, CH_2N_3), 2.98 (1H, m, SCH₂), 2.68 (1H, m, SCH₂), 2.4-(-0.4) (9H, br s, BH), 1.98 (1H, s, CH_{carb}), 1.94 (1H, m, CH₂CH₂CH₂), 1.83 (1H, m, CH₂CH₂CH₂), -2.69 (1H, br s, BHB). ¹¹B NMR (acetone-d₆): δ -9.5 (1B, d, J = 135 Hz), -10.7 (1B, d, J = 137 Hz), -14.8 (1B, d, J = 158 Hz), -17.2 (3B, d, J = 151 Hz), -22.0 (1B, d, J = 149 Hz), -32.8 (1B, dd, J = 149, J = 57 Hz), -36.6 (1B, d, J = 149 Hz). IR (neat, cm⁻¹): 2535 (v_{B-H}), 2101 (v_{N₃}). Anal. Calc. for C₅H₂₁B₉N₄S: C, 22.53; H, 7.94; N, 21.02; B, 36.49. Found: C, 22.38; H, 7.99; N, 21.12; B, 36.58%.

Crystal X-ray structure study.

A colourless plate crystal of **5a** having approximate dimensions of $0.60 \times 0.45 \times 0.20$ mm were used for single-crystal X-ray diffraction experiment. Crystal

data: $C_5H_{20}B_9NS(1.5)(N_2H_4)$ (M=4271.65), triclinic, space group P-1 (No.2), a =8.437(1), b = 9.536(2), c = 10.671(2) Å, $\alpha = 91.896(3)$, $\beta = 105.717(3)$, $\gamma = 107.104(3)^{\circ}$, V = 784.0(2) Å³, Z = 2, $D_{calc} = 1.151$ g/cm³. All measurements were made on a Bruker APEX2 CCD diffractometer with graphite monochromated Mo-K $_{\alpha}$ radiation. The data were collected at a temperature of 100 K a maximum 20 value of 52.0°. A total of 7041 reflections were measured. Equivalent reflections were averaged to give 3000 unique reflections ($R_{int} = 0.0206$) that were used for the structure solution and refinement. The minimum and maximum transmission coefficients ($\mu = 0.190 \text{ mm}^{-1}$), $T_{max} = 0.963$ and $T_{min} = 0.895$, were determined using SADABS program.²⁻⁵ The sample studied was triple twinned crystal with approximate components ratio of 6:2:2. An attempt to separate obtained intensity set to individual components using CELL NOW program was not successful. A HKLF5 file suitable for further structure refinement was created using the PLATON/TwinRotMat option. The structure was solved using direct method and refined over F²_{hkl} using anisotropic full-matrix least-squares method for all non-hydrogen atoms. The H(N) hydrogen atoms and the carborane H(C) and H(B) hydrogen atoms were found in the difference density Fourier map. The substituent H(C) hydrogen atoms were placed at calculated positions. All the hydrogen atoms were refined using a riding model with U(H) =1.2 U_{eq}(C). The final refinements were converged to $R_1 = 0.0447$ (from 2688 reflections with $I > 2\sigma(I)$ using F_{hkl}), $wR_2 = 0.1241$ (from all 3000 reflections using F_{hkl}^2 , GOOF = 1.062 (197 parameters). All calculations were performed using SHELXTL program package.⁶

Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC 941869). These data can be obtained free of charge from via www.ccdc.cam.ac.uk/data request/cif.

References.

- M. Yu. Stogniy, I. B. Sivaev, P. V. Petrovskii, and V. I. Bregadze, *Dalton Trans.*, 2010, **39**, 1817-1822.
- 2. Bruker, APEX-II. Version 2.0-1, Bruker AXS Inc., Madison, WI, USA.
- 3. Bruker, SAINT. Version 7.23A. Bruker AXS Inc., Madison, WI, USA.
- 4. G. M. Sheldrick, SADABS. Version 2004/1. Bruker AXS Inc., Madison, WI, USA.
- 5. Bruker, XPREP. Version 2005/2. Bruker AXS Inc., Madison, WI, USA.
- 6. G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.

Fig. S1. Hydrogen bonds in the structure of 7-NH₃CH₂CH₂CH₂S-7,8-*nido*-C₂B₉H₁₁*1.5N₂H₄ (5a).

Fig. S2. Association of dimers in the crystal structure of $7-NH_3CH_2CH_2CH_2S-7$, $8-nido-C_2B_9H_{11}*1.5N_2H_4$ (5a).

Fig S3. A fragment of crystal structure of 7-NH₃CH₂CH₂CH₂S-7,8-*nido*-C₂B₉H₁₁*1.5N₂H₄ (**5a**).

Table S1. Parameters of the N1-H...N hydrogen bonds in the structure of 7-NH₃CH₂CH₂CH₂S-7,8-*nido*-C₂B₉H₁₁*1.5N₂H₄ (**5a**).

Bond	N1-H (Å)	HN (Å)	N1N (Å)	Angle N1-HN (°)	Symm.code
N1-H1N1 N4	0.88	2.01	2.883(5)	170	+x, +y, +z
N1-H2N1 N2	0.88	2.01	2.873(6)	165	-x, 1-y, 1-z
N1-H2N1 N2'	0.88	2.17	3.034(5)	166	-x, 1-y, 1-z
N1-H3N1 N3	0.88	2.06	2.887(5)	155	1+x, 1+y, +z

N1-H3N1 N3'	0.88	2.23	3.038(6)	153	1+x, 1+y, +z
-------------	------	------	----------	-----	--------------