Tetraphenylethene-Decorated BODIPY Monomer/Dimer

with Intense Fluorescence in Various Matrixes

Zhensheng Li,^a Yong Chen,^a Xiaojun Lv^a and Wen-Fu Fu^{*a,b}

^aKey Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China & University of Chinese Academy of Sciences, Beijing, 100190, *P.R. China. E-mail: fuwf@mail.ipc.ac.cn* ^bCollege of Chemistry and Engineering, Yunnan Normal University, Kunming 650092, P.R. China

Supporting Information

- Figure S1–S3. ¹H, ¹³C and ¹⁹F NMR spectra of 1–3 in CDCl₃.
- Figure S4. Photographs of the powders 1–3 under the irradiation.
- Figure S5. UV-Vis and fluorescence spectra of 1 in different solvents.
- Figure S6. UV-Vis and fluorescence spectra of 2 in different solvents.
- Figure S7. UV-Vis and fluorescence spectra of 3 in different solvents.
- Figure S8. UV-Vis and fluorescence spectra of 2 and 3 in the solid state.
- Figure S9. Fluorescence spectra of 1 in THF–H₂O mixture at different water fraction.
- Figure S10. Cyclic voltammograms of 1-4.
- Table S1. Calculated electronic excitation energies, oscillator strengths and the related wave function.
- **Figure S11**. Some frontier π MOs energy levels of 1
- Figure S12. Some frontier π MOs energy levels of 2
- Figure S13. Some frontier π MOs energy levels of 3

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹⁹F NMR (376 MHz, CDCl₃)

< -146.28< -146.39

Figure S1. ¹H, ¹³C and ¹⁹F NMR spectra of 1 in CDCl₃.

¹H NMR (400 MHz, CDCl₃)

--2.48

-1.25

Figure S2. ¹H, ¹³C and ¹⁹F NMR spectra of 2 in CDCl₃.

¹H NMR (400 MHz, CDCl₃)

7, 507, 507, 467, 447, 237, 287, 207, 206, 866, 86

-2.47

-1.24-1.13

165 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 fl (ppm)

Figure S3. ¹H, ¹³C, ¹⁹F NMR spectra of 3 in CDCl₃.

Figure S4. Photographs of the powders 1–3 under the irradiation.

Figure S5. UV-Vis and fluorescence spectra of 1 in different solvents.

Figure S6. UV-Vis and fluorescence spectra of 2 in different solvents.

Figure S7. UV-Vis and fluorescence spectra of 3 in different solvents.

Figure S8.UV-Vis and fluorescence spectra of 2 (a) and 3 (b) in the solid state.

Figure S9 Fluorescence spectra of 1 in THF-H₂O mixture at different water fraction.

Figure S10. Cyclic voltammograms of 1-4 (1.0 mM) in CH₂Cl₂. Scan rate = 0.1 V/s.

Dyes	State	Energy[eV]	λ[nm]	f	Orbitals(Coefficient)
1	\mathbf{S}_1	2.5521	485.82	0.1914	H-L(0.63960) H-1-L(0.28229)
	S_2	2.9645	418.23	0.5885	H-L(-0.25106) H-1-L(0.63210)
	S_3	3.3307	372.24	0.2238	H–L(0.15725) H-2–L(0.64684)
	\mathbf{S}_4	3.5235	351.88	0.1709	H–L+1(0.64904) H-4–L(0.14694)
2	\mathbf{S}_1	2.4673	502.51	0.4928	H–L(0.66693) H-2–L(0.20111)
	S_2	2.5956	477.67	0.0115	H-1-L(0.70379)
	S_3	2.9162	425.16	0.7040	H-2-L(0.66199) H-L(-0.17005)
	\mathbf{S}_4	3.2871	377.19	0.3659	H-3-L(0.65740) H-L(0.13488)
3	\mathbf{S}_1	2.4356	509.06	0.5573	H–L(0.68030) H-2–L+1(-0.16376)
	\mathbf{S}_2	2.4788	500.17	0.0015	H-1–L(0.57846) H–L+1(-0.31355)
	S_3	2.5351	489.07	0.2904	H-1–L+1(0.63763) H-2–L(0.28297)
	\mathbf{S}_4	2.5450	487.17	0.0123	H-L+1(0.52690) H-1-L(0.31411)

Table S1. Calculated electronic excitation energies, oscillator strengths and the related wave function

HOMO-2 (-6.20 eV)

HOMO-1 (-5.43 eV)

HOMO (-5.19 eV)

LUMO (-2.36 eV)

LUMO+1 (-1.26 eV)

HOMO-2 (-5.46 eV)

HOMO-1 (-5.31 eV)

HOMO (-5.12 eV)

LUMO+1 (-1.26 eV)

Figure S12. Some frontier π MOs energy levels of compound 2.

HOMO-2 (-5.43 eV)

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

HOMO-1 (-5.21 eV)

HOMO (-5.18 eV)

LUMO (-2.43 eV)

LUMO+1 (-2.34 eV)

Figure S13. Some frontier π MOs energy levels of compound 3.