Supporting Information

Influence of Nitrogen Donor Ligands on the Supramolecular Architecture of Copper (II) 2-Nitrobenzoate Complexes: Structures, DFT Calculations and Magnetic Properties

Raj Pal Sharma^{*,a}, Anju Saini^a, Divyakshi Monga^a, Paloth Venugopalan^a, Julia Jezierska^b Andrew Ozarowski^c, Valeria Ferretti^{*,c}

^aDepartment of Chemistry, Panjab University, Chandigarh-160014, India.

^b Institute of Chemistry, Wroclaw University, 50-383 Wroclaw, 14 F. Joliot Curie Str., Poland.

^cNational High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 United States

^d Center for Structural Diffractometry and Department of Chemical and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, I-44121, Ferrara, Italy.

Contents

- 1. Thermogravimetic Analysis details
- 2. IR and electronic spectroscopy details
- 3. Fig. S1. The TGA of complex 1
- 4. Fig. S2. The TGA of complex 2
- 5. Fig. S3. The TGA of complex 3
- 6. Fig. S4. IR spectrum of complex 1
- 7. Fig. S5. IR spectrum of complex 2
- 8. Fig. S6. IR spectrum of complex 3
- 9. Fig. S7 Packing diagram of complex 1
- 10. Fig. S8 Packing diagram of complex 2
- 11. Fig. S9 Packing diagram of complex 3

Thermogravimetic Analysis.

Thermogravimetric analysis of complexes **1-3** was examined from 33 to 1000° in air to study the thermal stability (Fig. S1-S3). In the TG curve of **1** the first weight loss step (calc = 23.99%, expt = 22.75%) from 74-158 °C corresponds to loss of one molecule of γ -picoline and one nitro molecule from one nitrobenzoate moiety.-In **2**, the first weight loss step (calc = 5.82%, expt = 6.00%) from 70-108 °C corresponds to the loss of two coordinated water molecule whereas the second and the third steps correspond to loss of one \Box -pic molecule (calc = 15.06%, expt = 14.99% from 108-175 °C) and two nitrobenzoate moieties-(calc = 54.00%, expt = 51.99% from 179-235 °C) respectively. In **3**, the first and second weight loss corresponds to the loss of two lattice water (calc = 4.55%, expt = 4.74% from 30-104 °C) and one 2-nitrobenzoate moiety (calc = 20.99%, expt = 20.52% from 104-198 °C) respectively.

IR and electronic spectroscopy

Infrared spectrum of the newly synthesized complex salts have been recorded in the region 4000-400 cm⁻¹ and tentative assignments have been made on the basis of earlier reports in literature [K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 1997, John Wiley & Sons, New York , 5th Ed. , J. Bellamy, The Infrared Spectra of Complex Molecules, 1980, Chapman & Hall, London/ New York, Ed.]. The strong band in the region 3371 cm⁻¹ in **2** and 3418- 3225 cm⁻¹ in **3** may be attributed to OH(H₂O) stretching and OH of triethanolamine and H₂O stretching, respectively. The bands varying from weak to medium intensity in the region 2877–3167 cm⁻¹ and 1607-1601 cm⁻¹ in complexes **1,2** and **3** may be respectively attributed to CH stretching. In **1-3**, the bands between 1593 -1578 cm⁻¹ and 1393- 1385 cm⁻¹ may be ascribed to v_{as}(COO) and v_s(COO), respectively. The Δv COO = v_{as}(COO) - v_{sym}(COO) values are 175 cm⁻¹ in **1**, 200 cm⁻¹ in **2** and 3. The bands between 1340- 1367cm⁻¹ and 1524-1537 cm⁻¹ in all complexes may be assigned to asymmetric and symmetric stretching mode of nitro group respectively. The bands at 835, 836 and

813 cm⁻¹ may be ascribed to $\delta(NO2)$ in **1**, **2** and **3** respectively. The bands at 4597, 554 cm⁻¹ in **1**, at 463, 538 cm⁻¹ in **2** and 466 and 568 cm-1 in **3** are ascribed to v(Cu-N) and v(Cu-O) vibrations. The bands at 648, 493 cm⁻¹ in **1** and at 649, 513 cm⁻¹ in **2** were ascribed to coordinated in plane and out plane ring deformation of γ -picoline and β -picoline, respectively. IR spectra are available as Figures S4-S6.

The electronic spectra of complex **1**, **2** and **3** were recorded in methanol. Complex **1** showed absorption at 732 ($\varepsilon_{max} = 94.07 \text{ mol}^{-1} \text{ L cm}^{-1}$) wheras complex **2** and **3** showed maximium absorption 738 nm with $\varepsilon_{max} = 102.5 \text{ mol}^{-1} \text{ L cm}^{-1}$ and with $\varepsilon_{max} 63.41 \text{ Lmol}^{-1}\text{ cm}^{-1}$ respectively, due to the d-d transitions. These values are agreement with those observed by O_4N_2 chromophore [F. A Cotton, G. Wilkinson, C. A Muritto, M. Bochmann, *Advanced Inorganic Chemistry*, sixth ed., 1999, John Wiley and Sons, New York, 869; R. P. Sharma, A. Saini, S. Singh, A. Singh, P. Venugopalan, P. Starynowicz, J. Jezierska, *J. Mol. Struct.* 2011, **994**, 21–28].

Figure S2. The TGA of complex salt 2

Figure S3. The TGA spectrum of **3**

Figure S4. IR spectrum of complex 1

Figure S6. IR spectrum of complex 3

Figure S7. Packing diagram of complex 1 viewed down a axis

Figure S8. Packing diagram of complex **2** viewed down b axis

Figure S9. Packing diagram of complex 3 viewed down a axis

