Supporting Information

Addition and *in situ* halo-cyclization of ω-alkenyl Grignard reagents with aldehydes, ketone, carbon dioxide and azodicarboxylate

Yasutomo Yamamoto*, Misa Shimizu, Ai Ohara, Akari Miyawaki, and Kiyoshi Tomioka* Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts Kodo, Kyotanabe 610-0395, Japan

yayamamo@dwc.doshisha.ac.jp; tomioka@pharm.kyoto-u.ac.jp

General

All melting points are uncorrected. Silica gel was used for column chromatography. ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) were measured in CDCl₃ and chemical shift values and coupling constants are presented in ppm δ relative to tetramethylsilane and Hz, respectively. Abbreviations are as follows: s, singlet; d, doublet; m, multiplet. ¹³C peak multiplicity assignments were made based on DEPT data. IR spectroscopy of oil and solid samples were measured as neat liquid films and KBr pellets, respectively. The wave numbers of maximum absorption peaks of IR spectroscopy are presented in cm⁻¹. Grignard reagents **1b-f** were prepared as THF solution from the corresponding alkyl halide and magnesium. Aldehydes **2a-d** and acetophenone (**8**) were distillated prior to use. Dehydrated solvents were purchased and used without further desiccation. Other reagents were purchased and used as received.

General procedure for the oxidative cyclization

Table 1, Entry 1. 2-(Bromomethyl)-5-phenyltetrahydrofuran (3a)¹

Under argon atmosphere to the solution of 3-butenylmagnesium bromide (1a) (0.5 M solution in THF, 2.4 mL, 1.2 mmol) in THF (1.6 mL) was added benzaldehyde (2a) (102 μ L, 1.0 mmol) at 0 °C over 5 min. After stirring for 0.5 h at the same temperature, a solution of PhI(OAc)₂ (1.29 g, 4.0 mmol) in 1,2-dichloroethane (11 mL) was added at 0 °C over 5 min. The reaction mixture was stirred for 1 h at room temperature. To the mixture was added satd Na₂S₂O₃ (10 mL) and extracted with AcOEt three times. The combined organic layers were dried over Na₂SO₄ and concentrated. The resulting crude mixture was purified by silica gel column chromatography (hexane/AcOEt 10/1) to give **3a** (142 mg, 60%, *cis/trans* 1/2.3) as a pale yellow oil. ¹H NMR: 1.90-1.95 (2H, m), 2.27

¹ Hartung, J.; Kneuer, R.; Laug, S.; Schmidt, P.; Špehar, K.; Svoboda, I.; Fuess, H. Eur. J. Org. Chem. 2003, 4033–4052.

(1H, m), 2.41 (1H, m), 3.46 (1H, dd, *J* = 6.9, 10.3), 3.55 (1H, dd, *J* = 4.6, 10.3), 4.30 (0.3H, m, *cis* H-2), 4.49 (0.7H, m, *trans* H-2), 4.95 (0.3H, dd, *J* = 6.3, 8.6, *cis* H-5), 5.09 (0.7H, dd, *J* = 6.9, 7.4, *trans* H-5), 7.26-7.34 (5H, m).

Table 1, Entry 2. 2-(Bromomethyl)-5-(4-chlorophenyl)tetrahydrofuran (3b)

Column chromatography (toluene/AcOEt 1/0 to 3/1) gave **3b** (246 mg, 91% from 1 mmol of **2b**, *cis/trans* 1/2.8) as a pale yellow oil. Diastereomers were partially separated by column chromatography (hexane/acetone 20/1) to give pure *trans*-**3b** and a mixture of *cis/trans*-**3b** (*cis/trans* 1/0.16).

trans-**3b**: colorless oil. ¹H NMR: 1.87-2.03 (2H, m), 2.23-2.36 (2H, m), 3.43 (1H, dd, J = 6.9, 10.3), 3.52 (1H, dd, J = 4.6, 10.3), 3.78 (3H, s), 4.45 (1H, m), 5.02 (1H, dd, J = 6.3, 7.5), 6.86 (2H, d, J = 8.6), 7.24 (2H, d, J = 8.6). ¹³C NMR: 31.2 (CH₂), 35.1 (CH₂), 36.1 (CH₂), 55.3 (CH₃), 78.5 (CH), 81.3 (CH), 113.7 (CH), 127.0 (CH), 134.5 (C), 159.0 (C). IR: 2935, 1612, 1513. MS (EI) *m*/*z*: 271 (M⁺). HRMS-DART *m*/*z*: [M+H]⁺ calcd for C₁₂H₁₆BrO₂, 271.0334; found, 271.0333.

cis-**3b**: ¹H NMR: 1.85-1.98 (2H, m), 2.17-2.26 (2H, m), 3.48 (1H, dd, J = 6.3, 10.3), 3.54 (1H, dd, J = 5.2, 10.3), 3.80 (3H, s), 4.31 (1H, m), 4.89 (1H, dd, J = 6.3, 8.6), 6.88 (2H, m), 7.30 (2H, m). ¹³C NMR: 30.4 (CH₂), 34.2 (CH₂), 36.2 (CH₂), 55.3 (CH₃), 78.5 (CH), 81.9 (CH), 113.8 (CH), 127.2 (CH), 134.1 (C), 159.1 (C). IR: 2958, 1613, 1513. MS (EI) *m/z*: 271 (M⁺). HRMS-DART *m/z*: [M+H]⁺ calcd for C₁₂H₁₆BrO₂, 271.0334; found, 271.0328. IR, MS and HRMS data described above were those of a mixture of diastereomers (*cis/trans* 1/0.16). ¹H and ¹³C NMR data of *cis*-**3b** was determined by comparing the NMR data of pure *trans*-**3b** and those of a mixture of *cis/trans*-**3b**.

Table 1, Entry 3. 2-(Bromomethyl)-5-(4-chlorophenyl)tetrahydrofuran (3c)

Column chromatography (hexane/AcOEt 20/1) gave 3c (121 mg, 44% from 1 mmol of 2c, *cis/trans* 1/4.1) as a pale yellow oil. Diastereomers were separated by column chromatography (hexane/toluene 2/1).

trans-**3c**: colorless oil. ¹H NMR: 1.83-1.93 (2H, m), 2.25 (1H, m), 2.41 (1H, m), 3.45 (1H, dd, J = 6.3, 10.3), 3.53 (1H, dd, J = 4.5, 10.3), 4.52 (1H, m), 5.06 (1H, dd, J = 6.3, 8.0), 7.25-7.27 (2H, m), 7.29-7.31 (2H, m). ¹³C NMR: 31.1 (CH₂), 35.3 (CH₂), 35.9 (CH₂), 78.7 (CH), 80.8 (CH), 126.9 (CH), 129.0 (CH), 133.0 (C), 141.2 (C), IR: 2925, 1730, 1492. MS (EI) *m/z*: 276 (M⁺). HRMS-DART *m/z*: [M+H]⁺ calcd for C₁₁H₁₃BrClO, 274.9838; found, 274.9846.

cis-**3c**: colorless oil. ¹H NMR: 1.84 (1H, m), 1.95 (1H, m), 2.20 (1H, m), 2.30 (1H, m), 3.50 (1H, dd, J = 6.3, 10.3), 3.55 (1H, dd, J = 5.2, 10.3), 4.33 (1H, m), 4.91 (1H, dd, J = 6.9, 8.0), 7.29-7.31 (4H, m). ¹³C NMR: 30.3 (CH₂), 34.4 (CH₂), 35.8 (CH₂) 78.5 (CH), 81.3 (CH), 128.5 (CH), 133.6 (C), 140.2 (C). IR: 2930, 1740, 1500. MS (EI) *m*/*z*: 276 (M⁺). HRMS-DART *m*/*z*: [M+H]⁺ calcd for C₁₁H₁₃BrClO, 274.9838; found, 274.9834.

Table 1, Entry 4. 2-(Bromomethyl)-5-phenethyltetrahydrofuran (3d)

Column chromatography (hexane/AcOEt 40/1) gave **3d** (207 mg, 77% from 1 mmol of **2d**, *cis/trans* 1/1.5) as a colorless oil. Diastereomers were partially separated by column chromatography (hexane/AcOEt 40/1) to give pure *trans*-**3d** and a mixture of *cis/trans*-**3d** (*cis/trans* 1/0.6).

trans-**3d**: colorless oil. ¹H NMR: 1.59 (1H, m), 1.73-1.79 (2H, m), 1.91 (1H, m), 2.07 (1H, m), 2.16 (1H, m), 2.67 (1H, ddd, J = 6.3, 9.8, 13.8), 2.62 (1H, ddd, J = 6.0, 10.3, 13.8), 3.35 (1H, dd, J = 6.9, 10.0), 3.46 (1H, dd, J = 5.2, 10.0), 4.04 (1H, dddd, J = 5.8, 5.8, 7.2, 7.2), 4.26 (1H, dddd, J = 5.2, 6.9, 6.9), 7.16-7.20 (3H, m), 7.25-7.29 (2H, m). ¹³C NMR: 30.9 (CH₂), 31.9 (CH₂), 32.4 (CH₂), 36.1 (CH₂), 37.3 (CH₂), 77.7 (CH), 79.3 (CH), 125.8 (CH), 128.31 (CH), 128.37 (CH), 141.9 (C). IR: 2931, 1602, 1454. MS (EI) *m*/*z*: 268 (M⁺). HRMS-DART *m*/*z*: [M+H]⁺ calcd for C₁₃H₁₈BrO, 269.0541; found, 269.0534.

cis-**3d**: ¹H NMR: 1.59 (1H, m), 1.75-1.83 (2H, m), 1.93 (1H, m), 1.97-2.11 (2H, m), 2.67 (1H, m), 2.74 (1H, m), 3.35 (1H, dd, J = 6.9, 9.8), 3.45 (1H, dd, J = 5.2, 9.8), 3.94 (1H, dddd, J = 6.3, 6.9, 6.9, 6.9), 4.15 (1H, dddd, J = 5.2, 6.3, 6.3, 6.9), 7.17-7.21 (3H, m), 7.26-7.29 (2H, m). ¹³C NMR: 30.0 (CH₂), 30.8 (CH₂), 32.3 (CH₂), 35.9 (CH₂), 37.6 (CH₂), 78.1 (CH), 79.8 (CH), 125.7 (CH), 128.29 (CH), 128.34 (CH), 141.9 (C). IR: 2929, 1602, 1495, 1454. MS (EI) *m/z*: 268 (M⁺). HRMS-DART *m/z*: [M+H]⁺ calcd for C₁₃H₁₈BrO, 269.0541; found, 269.0533. IR, MS and HRMS data described above were those of a mixture of diastereomers (*cis/trans* 1/0.6). ¹H and ¹³C NMR data of *cis*-**3d** was determined by comparing the NMR data of pure *trans*-**3d** and those of a mixture of *cis/trans*-**3d**.

Scheme 3. 2-(Bromomethyl)-6-phenyltetrahydro-2H-pyran (3e)

Column chromatography (hexane/AcOEt 20/1) gave **3e** (108 mg, 42% from 1 mmol of **2a**, *cis/trans* 7/1) as a colorless oil. Diastereomers were separated by column chromatography (hexane/toluene 2/1 to 1/2).

trans-**3e**: colorless oil. ¹H NMR: 1.50-1.76 (4H, m), 1.92-2.08 (2H, m), 3.48 (1H, dd, J = 5.7, 10.3), 3.54 (1H, dd, J = 6.9, 10.3), 3.92 (1H, m), 4.91 (1H, dd, J = 5.2, 5.2), 7.25-7.47 (5H, m). ¹³C NMR: 18.6 (CH₂), 28.3 (CH₂), 28.9 (CH₂), 34.5 (CH₂), 71.1 (CH), 73.1 (CH), 126.6 (CH), 127.2 (CH), 128.5 (CH), 141.0 (C). IR: 3028, 2927, 2853, 1494. HRMS-DART m/z: [M+H]⁺ calcd for C₁₂H₁₆BrO, 255.0385; found, 255.0375.

cis-**3e**: ¹H NMR: 1.39 (1H, m), 1.49 (1H, m), 1.71 (1H, m), 1.83-1.89 (2H, m), 2.00 (1H, m), 3.41 (1H, dd, J = 5.7, 10.3), 3.48 (1H, dd, J = 5.7, 10.3), 3.73 (1H, dddd, J = 2.0, 5.7, 5.7, 11.2), 4.43 (1H, dd, J = 2.0, 17.2), 7.22-7.38 (5H, m). ¹³C NMR: 23.6 (CH₂), 29.5 (CH₂), 33.2 (CH₂), 35.9 (CH₂), 77.3 (CH), 79.9 (CH), 125.8 (CH), 127.4 (CH), 128.3 (CH), 142.8 (C). IR: 3030, 2937, 2855, 1491. HRMS-DART *m*/*z*: [M+H]⁺ calcd for C₁₂H₁₆BrO, 255.0385; found, 255.0393. The relative configuration was determined by NOE correlation as shown right.

8% NOE

Scheme 3. 3-Bromo-2,2-dimethyl-6-phenyltetrahydro-2*H*-pyran¹ (3f) and 2-(2-bromopropan-2-yl)-5-phenyltetrahydrofuran¹ (3g)

Column chromatography (hexane/AcOEt 20/1) gave 3f (117 mg, 43% from 1 mmol of 2a, only *trans* isomer was observed) as a colorless oil and 3g (32 mg, 12% from 1 mmol of 2a, *cis/trans* 1/1.7) as a colorless oil. The structure and relative configuration of 3f and 3g were determined based on the reported NMR data.¹

Scheme 4. 2-(Bromomethyl)-5-(phenyl)-5-(methyl)tetrahydrofuran (9)

Under argon atmosphere to the solution of $ZnCl_2$ (13.6 mg 0.1 mmol) and 3-butenylmagnesium bromide (1a) (0.5 M solution in THF, 2.4 mL, 1.2 mmol) in THF (1.6 mL) was added acetophenone (8) (117 µL, 1.0 mmol) at 0 °C over 5 min. After stirring for 0.5 h at the same temperature, a solution of PhI(OAc)₂ (1.29 g, 4.0 mmol) in 1,2-dichloroethane (11 mL) was added at 0 °C over 5 min. The reaction mixture was stirred for 1 h at room temperature. To the reaction mixture was added satd Na₂S₂O₃ (10 mL) and extracted with AcOEt three times. The combined organic layers were dried over Na₂SO₄, and concentrated. The resulting crude mixture was purified by silica gel column chromatography (hexane/Et₂O 50/1) to give **9** (139 mg, 55%, dr 1/1) as a colorless oil. Diastereomers were separated by column chromatography (hexane/toluene 2/1). The relative configuration was determined by ¹H-NOESY correlation as shown below.

(*RS,RS*)-9: colorless oil. ¹H NMR: 1.56 (3H, s), 1.86-1.99 (2H, m), 2.11 (1H, ddd, J = 8.3, 8.3, 12.3), 2.27 (1H, ddd, J = 5.4, 7.7, 12.3), 3.45 (1H, dd, J = 6.6, 10.3), 3.54 (1H, dd, J = 4.6, 10.3), 4.29 (1H, m), 7.22 (1H, m), 7.33 (2H, m), 7.39 (2H, m). ¹³C NMR: 30.1 (CH₂), 30.4 (CH₃), 36.2 (CH₂), 38.9 (CH₂), 77.8 (CH), 86.0 (C), 124.5 (CH), 126.5 (CH), 128.2 (CH), 147.5 (C). IR: 2970, 2926, 2854, 1445. MS (EI) *m*/*z*: 254 (M⁺). HRMS-DART *m*/*z*: [M+H]⁺ calcd for C₁₂H₁₆BrO, 255.0385; found, 255.0379.

(RS,SR)-9: colorless oil. ¹H NMR: 1.57 (3H, s), 1.75 (1H, m), 2.13 (1H, m), 2.21-2.31 (2H, m), 3.29 (1H, dd, J = 7.5, 10.0), 3.50 (1H, dd, J = 5.5, 10.0), 4.43 (1H, m), 7.23 (1H, m), 7.32 (2H, m), 7.44 (2H, m). ¹³C NMR: 29.8 (CH₃), 30.7 (CH₂), 35.7 (CH₂), 39.2 (CH₂), 78.7 (CH), 85.8 (C), 124.6 (CH), 126.6 (CH), 128.1 (CH), 148.1 (C). IR (neat): 2969, 2925, 2854, 1445. MS (EI) m/z: 254 (M⁺). HRMS-DART m/z: [M+H]⁺ calcd for C₁₂H₁₆BrO, 255.0385; found, 255.0386.

Scheme 5. 2-(Iodomethyl)-5-(4-methoxyphenyl)-2-methyltetrahydrofuran (10)

Column chromatography (hexane/AcOEt 10/1) gave **10** (289 mg, 87% from 1 mmol of **2b**, dr 1/1) as a colorless oil. Diastereomers were separated by column chromatography (hexane/AcOEt 20/1). The less polar isomer: colorless oil. ¹H NMR: 1.55 (s, 3H), 1.87-2.04 (m, 2H), 2.18 (m, 1H), 2.29 (m, 1H), 3.36 (d, 1H, J = 10.0), 3.41 (d, 1H, J = 10.0), 3.80 (s, 3H), 5.00 (dd, 1H, J = 6.0, 9.4), 6.86 (m, 2H), 7.25 (m, 2H). ¹³C NMR: 18.0 (CH₂), 26.6 (CH₃), 35.7 (CH₂), 37.6 (CH₂), 55.2 (CH₃), 81.5 (CH), 81.7 (C), 113.7 (CH), 127.1 (CH), 134.3 (C), 159.0 (C). IR: 2968, 1613, 1513. HRMS-DART m/z: [M+H]⁺ calcd for C₁₃H₁₈IO₂, 322.0352; found, 333.0359.

The more polar isomer: colorless oil. ¹H NMR: 1.52 (s, 3H), 1.90-1.99 (m, 2H), 2.17-2.32 (m, 2H), 3.36 (d, 1H, J = 10.0), 3.41 (d, 1H, J = 10.0), 3.80 (s, 3H), 4.95 (dd, 1H, J = 6.0, 9.2), 6.87 (d, 2H, J = 8.3), 7.34 (d, 2H, J = 8.3). ¹³C NMR: 17.8 (CH₂), 26.4 (CH₃), 35.6 (CH₂), 37.4 (CH₂), 55.3 (CH₃), 81.1 (CH), 81.4 (C), 113.7 (CH), 127.2 (CH), 134.2 (C), 159.0 (C). IR: 2968, 1613, 1514. HRMS-DART m/z: [M+H]⁺ calcd for C₁₃H₁₈IO₂, 322.0352; found, 333.0342.

Scheme 5. 2-(Chloromethyl)-5-(4-chlorophenyl)tetrahydrofuran (11)

Column chromatography (hexane/AcOEt 10/1) gave **11** (44 mg, 19% from 1 mmol of **2c**, *cis/trans* 1/1.3) as a colorless oil. Diastereomers were partially separated by column chromatography (hexane/AcOEt 20/1) to give pure *trans*-**11** and a mixture of *cis/trans*-**11** (*cis/trans* 1/0.1).

trans-**11**: colorless oil. ¹H NMR: 1.86 (m, 1H), 1.95 (m, 1H), 2.21 (m, 1H), 2.40 (m, 1H), 3.61 (dd, 1H, J = 6.0, 11.2), 3.66 (dd, 1H, J = 4.9, 11.2), 4.47 (m, 1H), 5.05 (dd, 1H, J = 6.3, 8.0), 7.24-7.31 (m, 4H). ¹³C NMR: 29.9 (CH₂), 35.1 (CH₂), 47.1 (CH₂), 79.0 (CH), 80.8 (CH), 126.9 (CH), 128.5 (CH), 132.9 (C), 141.4 (C). IR: 2951, 2871, 1492. HRMS-DART *m*/*z*: [M+H]⁺ calcd for C₁₁H₁₃Cl₂O, 231.0344; found, 231.0341.

cis-**11**: ¹H NMR: 1.82 (m, 1H), 1.97 (m, 1H), 2.17 (m, 1H), 2.30 (m, 1H), 3.63 (dd, 1H, J = 5.8, 11.2), 3.67 (dd, 1H, J = 4.9, 11.2), 4.33 (m, 1H), 4.90 (dd, 1H, J = 6.8, 8.6), 7.28-7.32 (m, 4H). ¹³C NMR: 29.4 (CH₂), 34.5 (CH₂), 47.1 (CH₂), 78.9 (CH), 81.3 (CH), 127.3 (CH), 128.6 (CH), 133.2 (C), 140.9 (C). IR: 2953, 2873, 1492. HRMS-DART *m*/*z*: [M+H]⁺ calcd for C₁₁H₁₃Cl₂O, 231.0344; found, 231.0346. IR, MS and HRMS data described above were those of a mixture of diastereomers (*cis/trans* 1/0.1). ¹H and ¹³C NMR data of *cis*-**11** was determined by comparing the NMR data of pure *trans*-**3d** and those of a mixture of *cis/trans*-**11**.

Scheme 6. 3-(Bromomethyl)isobenzofuran-1(3H)-one (13)

Under argon atmosphere to the solution of (2-vinylphenyl)magnesium bromide (1d) (0.4 M solution in THF, 2.5 mL, 1.0 mmol) in THF (15 mL) was bubbled carbon dioxide gas, generated from dry ice and passed through $CaCl_2$ drying tube, for 0.5 h at 0 °C. After stirring for 0.5 h at the same

temperature, a solution of PhI(OAc)₂ (1.29 g, 4.0 mmol) in 1,2-dichloroethane (11 mL) was added at 0 °C over 5 min. The reaction mixture was stirred for 1 h at room temperature. To the reaction mixture was added satd Na₂S₂O₃ (10 mL). The separated aqueous layer was acidified with 10% sulfuric acid (2 mL) to pH 2 and extracted with AcOEt (5 mL) three times. The combined organic layers were dried over sodium sulfate, and concentrated. The resulting crude mixture was purified by silica gel column chromatography (hexane/acetone 20/1) to give **13** (98 mg, 43%) as colorless solids of mp 68-70 °C. ¹H NMR: 3.75 (1H, dd, J = 5.2, 10.9), 3.78 (1H, dd, J = 5.2, 10.9), 7.59-7.65 (2H, m), 7.73 (1H, t, J = 7.5), 7.94 (1H, d, J = 7.5). ¹³C NMR: 32.1 (CH₂), 78.6 (CH), 122.4 (CH), 125.8 (CH), 126.4 (C), 130.0 (CH), 134.3 (CH), 147.1 (C), 169.4 (C). IR: 1764. FABMS *m/z*: 227 [M+H]⁺. HRMS–FAB *m/z*: [M+H]⁺ calcd for C₉H₈BrO₂, 226.9702; found, 226.9717.

Scheme 6. 3-(Bromomethyl)-1,2-(di-tert-butyldicarboxyl)pyrazolidine (15)

Column chromatography (CHCl₃/AcOEt 100/1) gave **15** (248 mg, 68% from 1 mmol of **14**) as a colorless oil. ¹H NMR: 1.47 (9H, s), 1.48 (9H, s), 1.99 (1H, m), 2.33 (1H, m), 3.15 (1H, m), 3.24 (1H, dd, J = 8.6, 9.7), 3.62 (1H, d, J = 9.8), 4.09 (1H, dd, J = 8.6, 11.5), 4.39 (1H, m) ¹³C NMR: 28.17 (CH₃), 28.21 (CH₃), 31.6 (CH₂), 34.8 (CH₂), 46.7 (CH₂), 59.2 (CH), 81.4 (C), 81.5 (C), 156.3 (C). IR: 2979, 1698. MS (EI) *m*/*z*: 364 (M⁺). HRMS-ESI *m*/*z*: [M+Na]⁺ calcd for C₁₄H₂₅BrN₂O₄Na, 387.0895; found, 387.0887.

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz) of trans-3b

 ^1H NMR (CDCl₃, 500 MHz) and ^{13}C NMR (CDCl₃, 125 MHz) of trans-3c

 ^1H NMR (CDCl₃, 500 MHz) and ^{13}C NMR (CDCl₃, 125 MHz) of cis-3c

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz) of *cis*-major **3d** (*cis/trans* 1/0.6)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz) of **10**, the less polar isomer

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz) of **10**, the more polar isomer

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz) of trans-11

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz) of *cis*-major **11** (*cis/trans* 1/0.1)

 $^1\mathrm{H}$ NMR (CDCl_3, 500 MHz) and $^{13}\mathrm{C}$ NMR (CDCl_3, 125 MHz) of 13

 ^1H NMR (CDCl₃, 500 MHz) and ^{13}C NMR (CDCl₃, 125 MHz) of **15**

