Electronic Supplementary Information

10

Metal-organic frameworks constructed from flexible ditopic ligands: , conformational diversity of an aliphatic ligand

Tae Kyung Kim,^a Kyung Joo Lee,^a Min Choi,^a Noejung Park,^{*a} Dohyun Moon,^{*b} and Hoi Ri Moon^{*a}

^{*a*} Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea. E-mail: hoirimoon@unist.ac.kr; noejung@unist.ac.kr

^b Beamline Division, Pohang Accelerator Laboratory, San-31, Hyoja-Dong, Nam-Gu, Pohang, Kyungbuk 790-784, Republic of Korea. E-mail:dmoon@postech.ac.kr

Mn(1)-O(1A)	2.131(2)	Mn(2)-O(2A)	2.068(2)
Mn(1)-O(4A) ^{#1}	2.132(2)	Mn(2)-O(3A) ^{#5}	2.085(2)
Mn(1)-O(1B)	2.175(2)	Mn(2)-O(1C)	2.137(2)
Mn(1)-O(3B) ^{#2}	2.189(2)	Mn(2)-O(2B)	2.212(2)
Mn(1)-O(2B) ^{#3}	2.258(2)	Mn(2)-O(3B) ^{#2}	2.253(2)
Mn(1)-O(4B) ^{#4}	2.261(2)	Mn(2)-O(4B) ^{#2}	2.380(2)
O(1A)-Mn(1)-O(4A) ^{#1}	175.14(8)	O(2A)-Mn(2)-O(3A) ^{#5}	94.56(8)
O(1A)-Mn(1)-O(1B)	90.47(8)	O(2A)-Mn(2)-O(1C)	99.95(9)
$O(4A)^{\#1}-Mn(1)-O(1B)$	90.61(8)	O(3A) ^{#5} -Mn(2)-O(1C)	88.85(9)
O(1A)-Mn(1)-O(3B) ^{#2}	93.44(8)	O(2A)-Mn(2)-O(2B)	101.47(8)
$O(4A)^{\#1}-Mn(1)-O(3B)^{\#2}$	91.29(8)	O(3A) ^{#5} -Mn(2)-O(2B)	87.49(8)
O(1B)-Mn(1)-O(3B) ^{#2}	90.39(8)	O(1C)-Mn(2)-O(2B)	158.49(8)
O(1A)-Mn(1)-O(2B) ^{#3}	84.95(7)	O(2A)-Mn(2)-O(3B) ^{#2}	101.63(8)
$O(4A)^{\#1}-Mn(1)-O(2B)^{\#3}$	90.20(7)	O(3A) ^{#5} -Mn(2)-O(3B) ^{#2}	163.74(8)
O(1B)-Mn(1)-O(2B) ^{#3}	100.63(8)	O(1C)-Mn(2)-O(3B) ^{#2}	89.86(8)
$O(3B)^{#2}-Mn(1)-O(2B)^{#3}$	168.87(7)	O(2B)-Mn(2)-O(3B) ^{#2}	87.79(7)
O(1A)-Mn(1)-O(4B) ^{#4}	89.54(7)	O(2A)-Mn(2)-O(4B) ^{#2}	157.77(7)
$O(4A)^{\#1}-Mn(1)-O(4B)^{\#4}$	89.19(8)	O(3A) ^{#5} -Mn(2)-O(4B) ^{#2}	107.18(7)
O(1B)-Mn(1)-O(4B) ^{#4}	177.62(8)	O(1C)-Mn(2)-O(4B) ^{#2}	85.41(8)
O(3B) ^{#2} -Mn(1)-O(4B) ^{#4}	91.99(7)	O(2B)-Mn(2)-O(4B) ^{#2}	75.48(7)
$O(2B)^{#3}-Mn(1)-O(4B)^{#4}$	77.00(7)	$O(3B)^{#2}$ -Mn(2)-O(4B) ^{#2}	56.56(7)

Table S1 Selected bond distances (Å) and angles (deg) of 1.

^{*a*} Symmetry transformation used to generate equivalent atoms:

⁵ ^{#1} x,-y+3/2,z+1/2 ^{#2} x+1,y,z ^{#3} x,-y+3/2,z-1/2 ^{#4} x+1,-y+3/2,z-1/2 ^{#5} x,y,z+1

Co(1)-O(2B)	2.046(3)	Co(2)-O(1B)	2.024(3)
Co(1)-O(3A) ^{#1}	2.059(3)	Co(2)-O(2A) ^{#4}	2.038(3)
Co(1)-O(1A)	2.070(3)	Co(2)-O(1C)	2.106(3)
Co(1)-O(4A) ^{#2}	2.103(3)	Co(2)-O(3B) ^{#5}	2.110(3)
Co(1)-O(3B) ^{#3}	2.143(3)	Co(2)-O(4A) ^{#2}	2.116(3)
Co(1)-O(4B) ^{#3}	2.198(3)	Co(2)-O(1A)	2.139(3)
O(2B)-Co(1)-O(3A) ^{#1}	169.62(15)	O(1B)-Co(2)-O(2A) ^{#4}	175.32(15)
O(2B)-Co(1)-O(1A)	93.69(13)	O(1B)-Co(2)-O(1C)	89.64(14)
O(3A) ^{#1} -Co(1)-O(1A)	95.73(13)	O(2A) ^{#4} -Co(2)-O(1C)	87.14(14)
O(2B)-Co(1)-O(4A) ^{#2}	90.41(13)	O(1B)-Co(2)-O(3B) ^{#5}	92.50(13)
O(3A) ^{#1} -Co(1)-O(4A) ^{#2}	87.08(13)	O(2A) ^{#4} -Co(2)-O(3B) ^{#5}	90.81(13)
O(1A)-Co(1)-O(4A) ^{#2}	79.29(13)	O(1C)-Co(2)-O(3B) ^{#5}	88.50(13)
O(2B)-Co(1)-O(3B) ^{#3}	93.35(13)	O(1B)-Co(2)-O(4A) ^{#2}	88.37(13)
$O(3A)^{\#1}-Co(1)-O(3B)^{\#3}$	88.25(13)	O(2A) ^{#4} -Co(2)-O(4A) ^{#2}	94.76(13)
O(1A)-Co(1)-O(3B) ^{#3}	105.91(13)	O(1C)-Co(2)-O(4A) ^{#2}	177.55(14)
$O(4A)^{#2}-Co(1)-O(3B)^{#3}$	173.35(13)	O(3B) ^{#5} -Co(2)-O(4A) ^{#2}	93.02(13)
O(2B)-Co(1)-O(4B) ^{#3}	88.14(13)	O(1B)-Co(2)-O(1A)	87.92(13)
$O(3A)^{\#1}-Co(1)-O(4B)^{\#3}$	83.70(13)	O(2A) ^{#4} -Co(2)-O(1A)	89.37(13)
O(1A)-Co(1)-O(4B) ^{#3}	166.58(14)	O(1C)-Co(2)-O(1A)	101.02(13)
$O(4A)^{#2}-Co(1)-O(4B)^{#3}$	114.02(13)	O(3B) ^{#5} -Co(2)-O(1A)	170.48(13)
$O(3B)^{\#3}$ -Co(1)-O(4B)^{\#3}	60.69(13)	O(4A) ^{#2} -Co(2)-O(1A)	77.49(13)

Table S2 Selected bond distances (\AA) and angles (deg) of 2.

^{*a*} Symmetry transformation used to generate equivalent atoms:

s^{#1}-x+3/2,-y,z+1/2^{#2}y+3/4,-x+3/4,z+3/4^{#3}-x+2,-y,-z+1^{#4}-y+3/4,x-3/4,z+1/4^{#5}y+3/4,-x+5/4,-z+5/4

Table S3 Selected bond distances (Å) and angles (deg) of 3.

Tb(1)-O(2F) ^{#1}	2.290(4)	Tb(2)-O(4B) ^{#2}	2.445(4)
Tb(1)-O(1B)	2.330(4)	Tb(2)-O(2C)	2.447(4)
Tb(1)-O(3B) ^{#2}	2.340(4)	Tb(2)-O(3B) ^{#2}	2.607(4)
Tb(1)-O(1G)	2.350(5)	Tb(2)-O(1C)	2.643(4)
Tb(1)-O(2E) ^{#1}	2.375(4)	Tb(3)-O(4A) ^{#4}	2.282(4)
Tb(1)-O(4D) ^{#3}	2.417(4)	Tb(3)-O(1F)	2.328(4)
Tb(1)-O(1A)	2.425(4)	Tb(3)-O(2C)	2.352(4)
Tb(1)-O(2A)	2.508(4)	Tb(3)-O(1E)	2.390(4)
Tb(2)-O(2B)	2.357(4)	Tb(3)-O(2D)	2.443(4)
Tb(2)-O(3A) ^{#4}	2.377(4)	Tb(3)-O(4D) ^{#5}	2.452(4)
Tb(2)-O(1H)	2.397(5)	Tb(3)-O(3D) ^{#5}	2.499(4)
Tb(2)-O(1D)	2.407(3)	Tb(3)-O(1D)	2.514(3)
Tb(2)-O(2A)	2.411(4)	Tb(3)-O(2E)	2.597(4)
O(2F) ^{#1} -Tb(1)-O(1B)	100.72(16)	O(3A) ^{#4} -Tb(2)-O(3B) ^{#2}	145.97(13)
O(2F) ^{#1} -Tb(1)-O(3B) ^{#2}	81.71(14)	O(1H)-Tb(2)-O(3B) ^{#2}	113.33(18)
O(1B)-Tb(1)-O(3B)+	75.11(14)	O(1D)-Tb(2)-O(3B) ^{#2}	120.31(12)
O(2F) ^{#1} -Tb(1)-O(1G)	90.21(19)	O(2A)-Tb(2)-O(3B) ^{#2}	68.13(12)
O(1B)-Tb(1)-O(1G)	143.82(15)	O(4B) ^{#2} -Tb(2)-O(3B) ^{#2}	51.00(12)
O(3B) ^{#2} -Tb(1)-O(1G)	72.50(15)	O(2C)-Tb(2)-O(3B) ^{#2}	111.45(13)
O(2F) ^{#1} -Tb(1)-O(2E) ^{#1}	77.83(15)	O(2B)-Tb(2)-O(1C)	141.83(14)
O(1B)-Tb(1)-O(2E) ^{#1}	75.31(13)	O(3A) ^{#4} -Tb(2)-O(1C)	138.20(15)
O(3B) ^{#2} -Tb(1)-O(2E) ^{#1}	139.88(14)	O(1H)-Tb(2)-O(1C)	68.39(17)
O(1G)-Tb(1)-O(2E) ^{#1}	140.87(15)	O(1D)-Tb(2)-O(1C)	112.23(13)
O(2F) ^{#1} -Tb(1)-O(4D) ^{#3}	85.20(14)	O(2A)-Tb(2)-O(1C)	100.25(13)
O(1B)-Tb(1)-O(4D) ^{#3}	142.16(13)	O(4B) ^{#2} -Tb(2)-O(1C)	69.19(14)
O(3B) ^{#2} -Tb(1)-O(4D) ^{#3}	142.46(14)	O(2C)-Tb(2)-O(1C)	50.59(12)
O(1G)-Tb(1)-O(4D) ^{#3}	72.52(15)	O(3B) ^{#2} -Tb(2)-O(1C)	69.63(13)
O(2E) ^{#1} -Tb(1)-O(4D) ^{#3}	69.47(13)	O(4A) ^{#4} -Tb(3)-O(1F)	81.56(15)
O(2F) ^{#1} -Tb(1)-O(1A)	155.12(14)	O(4A) ^{#4} -Tb(3)-O(2C)	79.47(14)
O(1B)-Tb(1)-O(1A)	83.21(15)	O(1F)-Tb(3)-O(2C)	143.12(14)
O(3B) ^{#2} -Tb(1)-O(1A)	122.74(13)	O(4A) ^{#4} -Tb(3)-O(1E)	148.35(14)
O(1G)-Tb(1)-O(1A)	101.07(17)	O(1F)-Tb(3)-O(1E)	127.79(14)
O(2E) ^{#1} -Tb(1)-O(1A)	79.51(13)	O(2C)-Tb(3)-O(1E)	80.58(13)
O(4D) ^{#3} -Tb(1)-O(1A)	77.33(13)	O(4A) ^{#4} -Tb(3)-O(2D)	123.86(14)

O(2F) ^{#1} -Tb(1)-O(2A)	152.40(14)	O(1F)-Tb(3)-O(2D)	78.27(16)
O(1B)-Tb(1)-O(2A)	75.98(13)	O(2C)-Tb(3)-O(2D)	86.53(14)
O(3B) ^{#2} -Tb(1)-O(2A)	70.90(13)	O(1E)-Tb(3)-O(2D)	78.90(14)
O(1G)-Tb(1)-O(2A)	78.55(16)	O(4A) ^{#4} -Tb(3)-O(4D) ^{#5}	89.82(14)
O(2E) ^{#1} -Tb(1)-O(2A)	126.05(13)	O(1F)-Tb(3)-O(4D) ^{#5}	78.46(14)
O(4D) ^{#3} -Tb(1)-O(2A)	114.49(12)	O(2C)-Tb(3)-O(4D) ^{#5}	132.47(12)
O(1A)-Tb(1)-O(2A)	52.46(13)	O(1E)-Tb(3)-O(4D) ^{#5}	85.79(13)
O(2B)-Tb(2)-O(3A) ^{#4}	79.78(15)	O(2D)-Tb(3)-O(4D)#5	134.94(13)
O(2B)-Tb(2)-O(1H)	138.92(16)	O(4A) ^{#4} -Tb(3)-O(3D) ^{#5}	75.36(15)
O(3A) ^{#4} -Tb(2)-O(1H)	74.39(18)	O(1F)-Tb(3)-O(3D) ^{#5}	124.73(15)
O(2B)-Tb(2)-O(1D)	77.73(12)	O(2C)-Tb(3)-O(3D) ^{#5}	80.13(13)
O(3A) ^{#4} -Tb(2)-O(1D)	72.91(13)	O(1E)-Tb(3)-O(3D) ^{#5}	77.21(14)
O(1H)-Tb(2)-O(1D)	122.53(17)	O(2D)-Tb(3)-O(3D)#5	154.20(16)
O(2B)-Tb(2)-O(2A)	75.07(13)	O(4D) ^{#5} -Tb(3)-O(3D) ^{#5}	52.42(12)
O(3A) ^{#4} -Tb(2)-O(2A)	84.84(14)	O(4A) ^{#4} -Tb(3)-O(1D)	72.26(13)
O(1H)-Tb(2)-O(2A)	71.33(16)	O(1F)-Tb(3)-O(1D)	77.27(13)
O(1D)-Tb(2)-O(2A)	147.42(13)	O(2C)-Tb(3)-O(1D)	66.94(12)
$O(2B)-Tb(2)-O(4B)^{#2}$	79.80(15)	O(1E)-Tb(3)-O(1D)	120.98(13)
$O(3A)^{#4}-Tb(2)-O(4B)^{#2}$	143.34(14)	O(2D)-Tb(3)-O(1D)	52.40(12)
O(1H)-Tb(2)-O(4B) ^{#2}	137.54(17)	O(4D) ^{#5} -Tb(3)-O(1D)	151.61(13)
O(1D)-Tb(2)-O(4B) ^{#2}	73.19(13)	O(3D) ^{#5} -Tb(3)-O(1D)	137.06(12)
O(2A)-Tb(2)-O(4B) ^{#2}	118.43(12)	O(4A) ^{#4} -Tb(3)-O(2E)	149.58(13)
O(2B)-Tb(2)-O(2C)	141.97(13)	O(1F)-Tb(3)-O(2E)	76.53(13)
O(3A) ^{#4} -Tb(2)-O(2C)	102.58(14)	O(2C)-Tb(3)-O(2E)	130.08(13)
O(1H)-Tb(2)-O(2C)	75.68(15)	O(1E)-Tb(3)-O(2E)	51.82(12)
O(1D)-Tb(2)-O(2C)	67.21(12)	O(2D)-Tb(3)-O(2E)	71.91(12)
O(2A)-Tb(2)-O(2C)	142.77(13)	O(4D) ^{#5} -Tb(3)-O(2E)	65.41(12)
O(4B) ^{#2} -Tb(2)-O(2C)	76.47(13)	O(3D) ^{#5} -Tb(3)-O(2E)	100.19(13)
O(2B)-Tb(2)-O(3B) ^{#2}	73.70(13)	O(1D)-Tb(3)-O(2E)	121.89(12)

^{*a*} Symmetry transformation used to generate equivalent atoms:

5

 $^{\#1}x+1/2,-y+3/2,z-1/2 \quad ^{\#2}-x+3/2,y-1/2,-z+3/2 \quad ^{\#3}x+1,y,z \quad ^{\#4}-x+2,-y+2,-z+2 \quad ^{\#5}x+1/2,-y+3/2,z+1/2 \quad ^{\#5}x+1/2,-y+3/2,z+1/2 \quad ^{\#5}x+1/2,-y+3/2,z+1/2 \quad ^{\#5}x+1,y,z \quad ^{\#4}x+1,y,z \quad ^$

Fig. S1 An ORTEP drawing of **1** with atomic numbering scheme (thermal ellipsoids at 30% probability). Symmetry operation: ^{#1} x,-y+3/2,z-1/2 ^{#2} x,-y+3/2,z+1/2 ^{#3} x+1,-y+3/2,z-1/2 ^{#4} 1+x,y,z $_{5}$ ^{#5} x+1,-y+3/2,z+1/2 ^{#6} x+1,y,z.

Fig. S2 An ORTEP drawing of **2** with atomic numbering scheme (thermal ellipsoids at 30% probability). Symmetry operation: ^{#1} y+3/4,-x+3/4,z-1/4 ^{#2} -x+2,-y,-z+1 ^{#3} -y+3/4,x-3/4,z+1/4 ^{#4} -x+3/2,-y,z+1/2 ^{#5} y+3/4,-x+3/4,z+3/4 ^{#6} y+3/4,-x+5/4,z+5/4 ^{#7} x, y,z+1.

Fig. S3 An ORTEP drawing of **3** with atomic numbering scheme (thermal ellipsoids at 30% probability). DMF coordinating to Tb 1 is disordered. Symmetry operation: ^{#1} x+1/2,-y+3/2,z-1/2 ^{#2} x+2/5,y+1/2,-z+3/2 ^{#3} -x+5/2,y-1/2,-z+3/2 ^{#4} -x+3/2,y+1/2,-z+3/2 ^{#5} x+1,y,z ^{#6} -x+3/2,y-1/2,-z+3/2 ^{#7} -x+1,-y+1,-z+2 ^{#8} -x+2,-y+1,-z+2 ^{#9} -x+2,-y+2,-z+2 ^{#10} -x+1,-y+2,-z+2 ^{#11} x-1/2,-y+3/2,z+1/2 ^{#12} x+1/2,-y+3/2,z+1/2.

Fig. S4 TGA trace for 1.

5

10

Fig. S5 TGA trace for 2.

5

Fig. S6 TGA trace for 3.