Electronic Supplementary Material (ESI) for New Journal of Chemistry

This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

A facile intracellular fluorescent probe for hydrazine and its application

Jie Zhao^a, Yongqian Xu^{a*}, Hongjuan Li^a, Aiping Lu^{b*}, Shiguo Sun^{a*}

^a College of Science, Northwest A&F University, Yangling, Shaanxi, 712100, China, E-mail: <u>xuyq@nwsuaf.edu.cn</u>, <u>sunsg@nwsuaf.edu.cn</u>

^b Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing 100700, China, E-mail: <u>lap64067611@126.com</u>

Supplementary information

Materials, CF_3COOH , acenaphthenequinone and malononitrile reagents were purchased from Aladdin (China). Other chemicals and solvents were used as received unless specifically noted. **1** was synthesized and purified according to the reported literature.

Measurements

Absorption and emission spectra were collected by using a Shimadzu 1750 UV-visible spectrometer and a RF-5301 fluorescence spectrometer (Japan), respectively. Cell images were performed on Ziss LSM-510META confocal microscope (Gemany). All experiments were performed in compliance with the relevant laws and institutional guidelines, and were approved by Northwest A&F University. Informed consent was obtained for all human subjects.

Sample Preparation and Titration. Stock solutions of hydrazine and relative chemicals were prepared with concentration of 1.0×10^{-2} M. Stock solution of compound **1** (2×10^{-3} M) was prepared in CH₃CN and further diluted to 5.0×10^{-6} M for titration experiments.

Fig. S1¹H NMR spectra of **1** in TFA

Fig. S2 ¹³C spectra of **1** in TFA.

Fig. S3 HSQCGP spectra of 1 in TFA.

Fig. S4 EI-MS spectrum of compound 1.

Fig. S5 ¹H NMR spectra of **2** in DMSO- d_6 .

Fig. S6 13 C spectra of **2** in DMSO- d_6 .

Fig. S7 HSQCGP spectra of 2 in DMSO- d_6 .

Fig. S8 UV-vis spectra of probe 1 (20 μ M) in the presence of different concentrations of hydrazine in a mixture of PBS/CH₃CN solution (9/1, V/V, pH 7.4). Each spectrum was recorded after 40 min of mixing. The arrows indicate the change of the absorption with the increasing of hydrazine.

Fig. S9 The probe **1** (5 μ M) and 120 μ M N₂H₄ were equilibrated in different temperature, the fluorescence intensity was acquired in 0.2 M PBS/CH₃CN (9/1, V/V, pH 7.4) with emission at 565 nm.

Fig. S10 Emission spectra of probe **1** (5 μ M) upon addition of increasing concentrations of hydrazine (0 - 64 equiv.) in PBS/CH₃CN (9/1, V/V, pH 7.4).

Fig. S11 The effect of pH value on the fluorescence intensity of probe **1** (30 μ M) in H₂O/CH₃CN (9/1, V/V). pH values: 2.2, 2.5, 3.3, 4.3, 5.0, 5.9, 6.3, 6.7, 7.4, 7.9, 9.4, 10.4, 11.1.

Fig. S12 Fluorescence spectra of **1** in the presence of representative metal ions, anions and hydrazine. Probe **1** = 5 μ M, hydrazine = 96 μ M, 120 μ M for Cu²⁺, Ba²⁺, Mg²⁺, Cd²⁺, Pb²⁺, Hg²⁺, Zn²⁺, Fe³⁺, SCN⁻, I, HCO₃⁻, Br⁻, Na⁺, SO₃²⁻, SO₄²⁻, Cl⁻, HPO₄²⁻, Mn²⁺. In a mixture of PBS/CH₃CN (9/1, V/V, pH 7.4), measured after 40 min of mixing.

Fig. S13 Response of 1 to addition of (A) 96 μ M hydrazine and (B) 120 μ M Cu²⁺, respectively.

Fig. S14 Fluorescence responses of probe **1** (5 μ M) to various amine-containing compounds (120 μ M for ethanediamine, triethylamine, ammonia, thiourea, NH₄⁺, Cys, Lys, Glu) and hydrazine (120 μ M) at 565 nm. In a mixture of PBS/CH₃CN (9/1, V/V, pH 7.4), measured after 40 min of mixing. 1. blank, 2. ethanediamine, 3. triethylamine, 4. ammonia, 5. thiourea, 6. NH₄⁺, 7. Cys, 8. Lys, 9. Glu and 10. hydrazine.

Fig. S15 The effect of different ratio of CH₃CN to PBS on the response of the probe to hydrazine.