Supporting Information

Octupolar chimeric compounds built from quinoline caged acetate moieties. A novel approach for 2-photon uncaging of biomolecules

Sébastien Picard,^{*a*} Emilie Genin,^{*a*} Guillaume Clermont,^{*a*} Vincent Hugues,^{*a*} Olivier Mongin,^{*b*} and Mireille Blanchard-Desce^{**a*}

^{*a*} Univ. Bordeaux, ISM, UMR 5255 CNRS, F-33400 Talence, France. Fax: +33 (5) 4000 6994; E-mail: <u>mireille.blanchard-desce@u-bordeaux1.fr</u>

^b Institut des Sciences Chimiques de Rennes (CNRS, UMR 6226), Université de Rennes 1, Campus Scientifique de Beaulieu, Bât 10A, F-35042 Rennes Cedex, France

Table of Contents

NMR spectra of the synthetised compounds	p. 2-14
Solvatochromic data	p. 15-17
2PA spectra of compounds 5a, 13 and 15	p. 18

-¹H NMR (200 MHz, DMSO-*d*₆)

-¹H NMR (300 MHz, CDCI₃)

-¹H NMR (600 MHz, CDCl₃)

-¹H NMR (400 MHz, CDCI₃)

-¹H NMR (400 MHz, CDCI₃)

-¹H NMR (400 MHz, CDCl₃)

	solvent	λ_{abs}^{max} [nm]	ϵ^{max} [M ⁻¹ .cm ⁻¹]	$\lambda_{ m em}^{ m max}$ [nm]	Stokes shift [10 ³ cm ⁻¹]
5a	Toluene	372	-	417	2.9
5a	CHCl ₃	374	$2.9 \ 10^4$	463	5.1
5a	AcOEt	365	-	457	5.5
5a	THF	368	$3.8 \ 10^4$	465	5.7
5a	CH_2Cl_2	372	-	487	6.3
5a	acetone	366	$3.2 \ 10^4$	507	7.6
5a	acetonitrile	365	-	537	8.8
5a	DMSO	370	$1.8 \ 10^4$	529	8.1
6	CHCl ₃	378	$3.2 \ 10^4$	475	5.4
6	THF	371	$3.4 \ 10^4$	473	5.8
6	acetone	368	$3.4 \ 10^4$	527	8.2
6	DMSO	373	$2.1 10^4$	555	8.8
8	CHCl ₃	390	$8.8 \ 10^4$	453	3.6
8	THF	385	$9.3 \ 10^4$	457	4.1
8	acetone	382	$9.1 \ 10^4$	504	6.3
8	DMSO	387	$5.9 \ 10^4$	544	7.5
21	Toluene	368	-	393	1.7
21	CHCl ₃	369	$8.92 10^4$	395	1.8
21	THF	366	-	392	1.8
21	DMSO	369	-	398	2.0

Table S1. Solvatochromic data of the 6-substituted quinoline dipolar, quadrupolar and octupolar compounds in different solvents

Table S2. Solvatochromic data of the 8-substituted quinoline dipolar and octupolar compounds

	solvent	λ_{abs}^{max} [nm]	$\lambda_{arepsilon m}^{\max}$ [nm]	Stokes shift $[10^3 \text{cm}^{-1}]^{\prime}$
15	Toluene	382	445	3.7
15	CHCl ₃	381	480	5.4
15	THF	373	486	6.2
15	acetone	370	523	7.9
15	Acetonitrile	370	552	8.9
15	DMSO	375	541	8.2
16	Toluene	380	450	4.1
16	CHCl ₃	381	491	5.9
16	THF	375	488	6.2
16	acetone	372	530	8.0
16	Acetonitrile	372	563	9.1
16	DMSO	377	563	8.8
19	Toluene	399	444	2.5
19	CHCl ₃	397	483	4.5
19	THF	392	481	4.7
19	acetone	388	524	6.7
19	Acetonitrile	386	555	7.9
19	DMSO	392	553	7.4

Figure S1. Emission spectra of 6-quinoline quadrupolar derivative 21 in solvents of various polarity.

Figure S2. Compared one-photon absorption and two-photon absorption spectra of compounds 5a (left), 15 (middle) and 13 (right) in THF.