Piperazine-based simple structure for selective sensing of Hg2+ and glutathione and construction of logic circuit mimicking INHIBIT gate

Kumaresh Ghosh^{*a}, Debojyoti Tarafdar^a, Asmita Samadder^b and Anisur Rahman Khuda-Bukhsh,^b

^aDepartment of Chemistry, University of Kalyani, Kalyani-741235, India. Email: ghosh_k2003@yahoo.co.in, Fax: +913325828282; Tel: +913325828750; ^bDepartment of Zoology, University of Kalyani, Kalyani-741235, India.

1. Change in emission of receptor 1 with various metal ions in THF

Figure 1S. Change in emission of 1 ($c = 2.5 \times 10^{-5}$ M) in THF upon addition of (a) AgClO₄, (b) Zn(ClO₄)₂, (c) Cd(ClO₄)₂, (d) Co(ClO₄)₂ (e) Cu(ClO₄)₂, (f) Mg(ClO₄)₂, (g) Ni(ClO₄)₂, (h) Pb(ClO₄)₂, [concentration of metal salts were 1 x 10⁻³ M].

2. Change in emission of receptor 1 with various metal ions in (THF-H₂O, 3:1 v/v).

Figure 2S. Change in emission of 1 ($c = 2.5 \times 10^{-5}$ M) in THF-Water (3:1 v/v) upon addition of (a) AgClO₄ (b) Zn(ClO₄)₂, (c) Cd(ClO₄)₂, (d) Co(ClO₄)₂ (e) Cu(ClO₄)₂, (f) Mg(ClO₄)₂, (g) Ni(ClO₄)₂, (h) Pb(ClO₄)₂, [concentration of metal salts were 1 x 10⁻³ M].

3. Change in absorbance of receptor 1 with various metal ions in THF.

Figure 3S. Change in absorbance of **1** ($c = 2.5 \times 10^{-5}$ M) in THF upon addition of of (a) Hg(ClO₄)₂, (b) AgClO₄, (c) Zn(ClO₄)₂, (d) Cd(ClO₄)₂, (e) Cu(ClO₄)₂, (f) Co(ClO₄)₂, (g) Mg(ClO₄)₂, (h) Pb(ClO₄)₂, (i) Ni(ClO₄)₂ [concentration of metal salts were 1 x 10⁻³ M].

4. UV-Vis Job plot of receptor 1 with Hg(ClO₄)₂ in (THF-H₂O, 3:1 v/v).

Figure 4S. UV-vis Job plot for receptor 1 with Hg^{2+} ([H] = [G] = 2.5 x 10⁻⁵ M).

5. Binding constant curve for 1 with Hg²⁺.

Figure 5S. Non liner binding constant curve for receptor 1 ($c = 2.5 \times 10^{-5} \text{ M}$) with Hg²⁺ ($c = 1 \times 10^{-3} \text{ M}$).

6. Comparison of IR- Sepctra.

Figure 6S. Partial IR spectrum of (a) 1 and (b) 1 in presence of equivalent amounts of $Hg(ClO_4)_2$.

7. Change in emission of 1 upon addition of Hg²⁺ in THF-HEPES buffer (10 mmol, pH 7.4) 3:1, v/v.

Figure 7S. Change in emission of receptor **1** ($c = 2.5 \times 10^{-5} \text{ M}$) in THF-HEPES buffer (10 mmol, pH 7.4) 3:1, v/v. upon addition of 10 equiv. amounts of Hg(ClO₄)₂.

8. Detection sensitivity level of 1 for Hg(ClO₄)₂.

Figure 8S. Change in emission of receptor 1 upon addition of 6 equiv. of different concentrations of Hg^{2+} .

9. Change in emission of 2 upon addition of Hg^{2+} in (THF-H₂O, 3:1 v/v) and fluorescence Job plot of receptor 2 with $Hg(ClO_4)_2$ in (THF-H₂O, 3:1 v/v).

Figure 9S. (a) Change in emission of **2** ($c = 2.5 \times 10^{-5}$ M) in THF-Water (3:1 v/v) upon addition of 10 equiv. of Hg(ClO₄)₂ ($c = 1 \times 10^{-3}$ M); (b) fluorescence Job plot for **2** with Hg⁺² ([H] = [G] = 2.5 x 10^{-5} M).

10. Binding constant curve for 2 with Hg²⁺.

Figure 10S. liner fittings for binding constant curve of $2 (c = 2.5 \times 10^{-5} \text{ M})$ with Hg²⁺ (c = 1 x 10⁻³ M).

11. Selectivity experiment on 2 towards sensing of Hg²⁺ over other metal ions.

Figure 11S. Selectivity of **2** ($c = 2.5 \times 10^{-5} \text{ M}$) towards Hg^{2+} ($c = 1 \times 10^{-3} \text{ M}$) in presence of different cations in THF-H₂O (3:1, v/v). 7 equiv.

12. Detection sensitivity level of 2 for Hg(ClO₄)₂

Figure 12S. Change in emission of 2 upon addition of 6 equiv. of different concentrations of Hg^{2+} .

13. Change in emission of "1-Hg²⁺" ensemble upon addition of Cys and Hcy in THF: H₂O (pH 7.4, HEPES buffer 10 mmol, 3:1, v/v)

Figure 13S. Fluorescence emission spectra of $1.Hg^{2+}$ complex in THF-H₂O (10 mmol HEPES, pH 7.4, 3:1, v/v) upon addition of 30 equiv. amounts of (a) Cysteine and (b) Homocysteine.

14. Fluorescence emission spectra of 1.Hg²⁺.GSH upon various additions of Hg²⁺

Figure 14S. Change in emission from solution of 1.Hg²⁺.GSH upon gradual addition of Hg²⁺.

15. Change in fluorescence ratio of "2.Hg²⁺" ensemble upon addition of Cys, Hcy and GSH

Figure 15S. Change in fluorescence ratio at 385 nm for '**2**-Hg²⁺, ensemble upon addition of 30 equiv. of various thiols ($c = 1 \times 10^{-3} \text{ M}$) in THF-H₂O (3:1,v/v; 10 mmol HEPES buffer, pH 7.4; $\lambda ex = 340 \text{ nm}$).

Figure 16S. MTT assays for (a) 1 and (b) 2.

17. Fluorescence and bright field images of HeLa cells upon incubation with 2 and $Hg(ClO_4)_2$

Figure 17S. (a) Bright field image of cells treated with receptor **2** (10 μ M) for **1** h at 37 °C, (b) Fluorescence image of cells treated with **2** (10 μ M) for 1 h at 37 °C, (c) Blue fluorescence image of cells upon treatment with receptor **2** (10 μ M) and then Hg (ClO₄)₂ (30 μ M) for 30 min at 37 °C, (d) Blue fluorescence image of cells upon treatment with **2** (10 μ M) and then Hg(ClO₄)₂ (30.0 μ M) for **1** h at 37 °C.

¹H NMR of 1 (400 MHz, CDCl₃):

¹³C NMR of 1 (CDCl₃, 100 MHz):

•••

¹H NMR of 2 (400 MHz, CDCl₃):

9.5 9.0 4.0 8.5 8.0 7.5 7.0 6.5 6.0 4.5 0.0 -0.5 pps 3.5 3.0 2.5 1.5 1.0 0.5 2.0

¹³C NMR of 2 (CDCl₃, 100 MHz):

140 130 120

Mass of 2:

