Supporting Information

The structures and properties of halogen bonds involving polyvalent

halogen in complexes of FXO_n (X = Cl, Br; n = 0-3)-CH₃CN

Na Cheng^a, Fuzhen Bi^a, Yongjun Liu^{*a,b}, Changqiao Zhang^a, Chengbu Liu^a

^aKey Laboratory of Theoretical and Computational Chemistry in Universities of Shandong, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China ^bNorthwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China

Table S1 The most positive electrostatic potentials (V_{max} , kcal/mol) on 0.001 a.u. surface of X in monomer FXO_n (X = Cl, Br; n = 0-3).

Complexes	V_{max}
FC1	45.1
FClO	47.7
FClO ₂	53.1
FClO ₃	43.1
FBr	54.4
FBrO	53.1
FBrO ₂	57.1
FBrO ₃	52.8

Table S2

Halogen-bonded lengths (R, Å), some key bond lengths (r, Å), angle F-Cl…N (Θ , \circ) and interaction energies (ΔE^{cp} , kcal/mol) for all Cl complexes at M05-2X/6-311++G(d,p) and MP2/aug-cc-pVTZ level with or without a BSSE-corrected energy expression.

		M05-2X/6-311++G(d,p)		MP2/aug-cc-pVTZ	
		without	With BSSE	without BSSE	with BSSE
		BSSE			
FC1-CH ₃ CN	$R_{Cl\cdots N}$	2.579	2.594	2.473	2.514
	r _{F-Cl}	1.665	1.665	1.662	1.661
	$r_{C\equiv N}$	1.144	1.144	1.167	1.168
	$\Theta_{F\text{-}Cl\cdots N}$	180.0	180.0	180.0	180.0
	ΔE^{cp}	-6.54	-6.54	-6.55	-6.54
FClO-CH ₃ CN(I)	$R_{Cl\cdots N}$	2.807	2.842	2.827	2.859
	r _{F-Cl}	1.716	1.716	1.747	1.746
	r _{Cl-O}	1.500	1.499	1.488	1.488
	$r_{C\equiv N}$	1.145	1.145	1.169	1.169
	$\Theta_{F\text{-}Cl\cdots N}$	155.6	156.1	149.6	150.6
	ΔE^{cp}	-6.02	-6.02	-5.37	-5.38
FCIO-CH ₃ CN(II)	$R_{Cl\cdots N}$	2.912	2.934	2.922	2.945
	$R_{O^{\cdot\cdot\cdot}H}$	2.514	2.560	2.589	2.710
	r _{F-Cl}	1.702	1.702	1.727	1.728
	r _{Cl-O}	1.505	1.504	1.490	1.490
	$r_{C\equiv N}$	1.147	1.147	1.170	1.170
	$\Theta_{F\text{-}Cl\cdots N}$	160.0	160.7	155.5	156.0
	ΔE^{cp}	-6.74	-6.75	-5.48	-5.31
FCIO-CH ₃ CN(III)	$R_{Cl\cdots N}$	2.971	2.981	2.893	2.926
	$R_{F\cdots H}$	2.507	2.591	2.507	2.580
	r _{F-Cl}	1.727	1.727	1.771	1.768
	r _{Cl-O}	1.498	1.498	1.491	1.491
	$r_{C\equiv N}$	1.147	1.147	1.170	1.170
	$\Theta_{F\text{-}Cl\cdots N}$	81.5	81.4	86.2	86.0
	ΔE^{cp}	-6.05	-6.05	-5.95	-5.93
FClO ₂ -CH ₃ CN(I)	$R_{Cl\cdots N}$	2.828	2.874	2.868	2.904
	r _{F-Cl}	1.737	1.738	1.783	1.783

	r _{Cl-O1}	1.442	1.441	1.438	1.438
	r _{Cl-O2}	1.442	1.441	1.438	1.438
	$r_{C\equiv N}$	1.145	1.145	1.168	1.169
	$\Theta_{F\text{-}Cl\cdots N}$	154.5	155.9	154.5	154.8
	ΔE^{cp}	-6.63	-6.66	-5.80	-5.81
FClO ₂ -CH ₃ CN(II)	$R_{Cl\cdots N}$	2.951	2.958	2.933	NA
	$R_{\rm O1\cdots H}$	2.704	2.881	3.013	NA
	r _{F-Cl}	1.725	1.726	1.771	NA
	r _{Cl-O1}	1.447	1.446	1.441	NA
	r _{Cl-O2}	1.440	1.440	1.437	NA
	$r_{C\equiv N}$	1.147	1.147	1.170	NA
	$\Theta_{F\text{-}Cl\cdots N}$	148.9	155.0	154.9	NA
	ΔE^{cp}	-6.12	-6.18	-5.18	NA
FClO ₂ -CH ₃ CN(III)	$R_{Cl\cdots N}$	3.004	3.036	2.999	3.037
	$R_{F\cdots H}$	2.497	2.557	2.473	2.539
	r _{F-Cl}	1.750	1.749	1.804	1.802
	r _{Cl-O1}	1.440	1.440	1.438	1.438
	r _{Cl-O2}	1.442	1.442	1.441	1.441
	r _{C≡N}	1.147	1.147	1.170	1.170
	$\Theta_{F\text{-}Cl\cdots N}$	80.2	80.0	84.3	84.1
	ΔE^{cp}	-6.28	-6.28	-5.96	-5.95
FClO ₃ -CH ₃ CN	$R_{Cl\cdots N}$	3.026	3.055	3.047	3.094
	r _{F-Cl}	1.672	1.672	1.680	1.680
	r _{Cl-O1}	1.425	1.425	1.419	1.419
	r _{Cl-O2}	1.425	1.425	1.419	1.419
	r _{Cl-O3}	1.425	1.425	1.419	1.419
	r _{C≡N1.}	1.145	1.145	1.169	1.169
	$\theta_{F\text{-}Cl\cdots N}$	180.0	180.0	180.0	180.0
	ΔE^{cp}	-4.27	-4.25	-3.79	-3.80

NA: the structure of complex $FCIO_2$ -CH₃CN(II) was not obtained at the MP2/aug-cc-pVTZ with BSSE-corrected energy expression.

Table S3 The amount of charge transfer (Q_{CT} , e) from CH₃CN to FXO_n (X = Cl, Br; n = 0-3), most significant donor-acceptor orbital interactions and their corresponding second-order perturbation stabilization energies ($\Delta E^{(2)}$, kcal/mol) for selected halogen -bonded complexes calculated at the M05-2X/6-311++G(d,p) level.

Complexes	Q _{CT}	donor	acceptor	interaction	$\Delta E^{(2)}$
FCl-CH ₃ CN	0.025	LP(1)N	BD*(1)F-Cl	n→σ*	10.17
FCIO-CH ₃ CN (I)	0.008	LP(1)N	BD*(1)F-Cl	n→σ*	2.69
FCIO-CH ₃ CN(II)	0.007	BD(3)C-N	BD*(1)F-Cl	$\pi \rightarrow \sigma^*$	2.24
FCIO-CH ₃ CN(III)	-0.001	BD(3)C-N	BD*(1)Cl-O	$\pi \rightarrow \sigma^*$	0.76
FClO ₂ -CH ₃ CN(I)	0.002	LP(1)N	BD*(1)F-Cl	n→σ*	1.98
FClO ₂ -CH ₃ CN(II)	0.000	BD(3)C-N	BD*(1)F-Cl	$\pi \rightarrow \sigma^*$	1.24
FClO ₂ -CH ₃ CN(III)	-0.004	BD(3)C-N	BD*(1)Cl-O2	$\pi \rightarrow \sigma^*$	0.45
FClO ₃ -CH ₃ CN	-0.005	LP(1)N	BD*(1)F-Cl	n→σ*	0.54
FBr-CH ₃ CN	0.056	LP(1)N	BD*(1)F-Br	n→σ*	18.36
FBrO-CH ₃ CN (I)	0.017	LP(1)N	BD*(1)F-Br	n→σ*	5.31
FBrO-CH ₃ CN(II)	0.018	BD(3)C-N	BD*(1)F-Br	$\pi \rightarrow \sigma^*$	3.70
FBrO-CH ₃ CN(III)	0.002	BD(3)C-N	BD*(1)Br-O	$\pi \rightarrow \sigma^*$	1.04
FBrO ₂ -CH ₃ CN(I)	0.010	LP(1)N	BD*(1)F-Br	n→σ*	3.84
FBrO ₂ -CH ₃ CN(II)	0.010	BD(3)C-N	BD*(1)F-Br	$\pi \rightarrow \sigma^*$	2.65
FBrO ₂ -CH ₃ CN(III)	0.001	BD(3)C-N	BD*(1)Br-O2	$\pi \rightarrow \sigma^*$	0.91
FBrO ₃ -CH ₃ CN	0.004	LP(1)N	BD*(1)F-Br	n→σ*	2.06

BD* denotes the formally empty antibonding orbital and LP denotes the occupied lone pair.

Table S4 The binding lengths ($r_{C - F}$, Å), significant orbital interactions and their corresponding second-order perturbation stabilization energies ($E^{(2)}$, kcal mol⁻¹), and some bond critical point properties (in a.u.) of the C···F interaction of complexes FXO_n-CH₃CN(III) (X = Cl, Br; n = 1, 2) at the M05-2X/6-311++G(d,p) level.

	FCIO-CH ₃ CN(III)	FClO ₂ -CH ₃ CN(III)	FBrO-CH ₃ CN(III)	FBrO ₂ -CH ₃ CN(III)
$r_{C \cdots F}$	2.953	2.953	2.936	2.963
Orbital interactions	LP(3)→BD*(3)C-N	LP(3)→BD*(3)C-N	LP(3)→BD*(3)C-N	LP(3)→BD*(3)C-N
E ⁽²⁾	0.73	0.53	0.73	0.39
ρ	0.0086	0.0087	0.0090	0.0087
$\nabla^2 \rho$	0.0334	0.0336	0.0350	0.0340
V _b	-0.0063	-0.0064	-0.0066	-0.0063
G _b	0.0073	0.0074	0.0077	0.0074
H _b	0.0010	0.0010	0.0011	0.0011
$ V_b /G_b$	0.8630	0.8649	0.8571	0.8514

Figure S1 The M05-2X-D3 potential energy curves of complexes $FCI-CH_3CN$ (left) and $FBrO-CH_3CN$ (III) (right). Distance between the monomers represents the distance between X (X = Cl or Br) and N atoms.

