Supplementary information

Helix foldamers of γ -peptides based on 2-aminocyclohexylacetic acid: a computational study

Joo Yun Lee,^{ab} Chong Hak Chae^b and Young Kee Kang*^a

^{*a*} Department of Chemistry and BK21 PLUS Research Team, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea. E-mail: ykkang@chungbuk.ac.kr; Fax: +82-43-273-2991; Tel: +82-43-261-2285

^b Drug Discovery Platform Technology Team, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea.

Page		Contents
s1	Table of	Contents
s2-s4	Table S1	Backbone torsion angles for optimized helical and extended structures of
	oligopept	ides of $\gamma Ac_6 a$ residues 1 and 2
s5	Table S2	Mean distances and angles for the C=O···H–N H-bonds of helix foldamers
	of Ac-(γA	$Ac_6a)_n$ -NHMe
s5	Table S3	Helical parameters for helix foldamer of oligo-yAc6a peptides
s6	Conforma	ational analysis of the $\gamma Ac_6 a(1)$ dipeptide in the gas phase
s7	Table S4	Backbone torsion angles and relative electronic energies of Ac-[γ Ac ₆ a
	(1)] ₂ -NH	Me
s8	Fig. S1	The optimized helical and extended structures of oligopeptides with $\gamma Ac_6 a$
	(1) residu	es: (a) dipeptide, (b) tetrapeptide, and (c) hexapeptide.
s9–s10	Fig. S2	The optimized helical and extended structures of oligopeptides with $\gamma Ac_6 a$
	(2) residu	es: (a) dipeptide, (b) tetrapeptide, (c) hexapeptide, and (d) octapeptide.
s11	Fig. S3	Representative optimized structures of the $\gamma Ac_6 a(1)$ dipeptide at the M06-
	2X/6-31+	G(d) level of theory.
s12-s21	Cartesian	coordinates of helical and extended structures of octa- $\gamma Ac_6 a(1)$ peptide
	optimized	d at the M06-2X/6-31+G(d) level of theory

Dipeptides									
H_1	ϕ	θ	5	Ψ	H_2	ϕ	θ	ζ	Ψ
H ₁ -14	-93.2	62.0	71.1	-155.6	H ₂ -14	-161.5	54.3	50.4	-152.4
	-139.8	56.7	52.6	-112.7		-97.2	57.8	58.6	-164.1
av.	-116.5	59.4	61.8	-134.2	av.	-129.3	56.0	54.5	-158.2
H ₁ -12	82.5	51.6	-79.4	-178.2	H ₂ -12	65.0	61.2	-84.4	174.1
	78.3	46.8	-69.5	137.4		65.6	65.7	-63.7	120.0
av.	80.4	49.2	-74.5	159.6	av.	65.3	63.5	-74.1	147.0
H ₁ -9	-100.2	63.0	81.0	-97.6	H ₂ -9	-103.5	61.6	79.2	-90.9
	-100.6	61.4	81.3	-93.4		-108.6	58.2	80.2	-82.2
av.	-100.4	62.2	81.1	-95.5	av.	-106.1	59.9	79.7	-86.6
H ₁ -7	137.6	50.5	44.0	80.3	H ₂ -7	63.5	49.9	45.9	94.4
	133.4	49.4	44.1	89.9		63.9	48.2	51.5	104.5
av.	135.5	49.9	44.1	85.1	av.	63.7	49.1	48.7	99.4
$\mathbf{E_1}^b$	-95.9	57.5	167.1	157.5	$\mathbf{E_2}^b$	-97.3	58.2	-176.3	-142.2
-	-93.5	57.1	168.4	150.0	_	-100.3	57.6	-175.0	-135.3
av.	-94.7	57.3	167.7	153.7	av.	-98.8	57.9	-175.6	-138.8
Totropontid	20								
	/	0	8			1	0	J.	
$\frac{\mathbf{H}_1}{\mathbf{H}_1 \mathbf{I}_4}$	φ	θ	<u> </u>	Ψ	H_2	φ	θ	<u> </u>	ψ
H ₁ -14	-94.9	60.8	69.6	-158.6	H ₂ -14	-91.3	61./	60.8	-171.4
	-146.4	56.7	00.8 67.1	-131.0		-14/.4	50.0	00.1 50.4	-115.4
	-140.0	57.0	54.4	-144.9		-1/0.0	56.7	59.4 50.7	-115.8
av	-141.4 -142.8	57.9	62 8	-124.0 -133.5	av	-147.0	58.7	58.7	-143.7 -124.3
ц. Ц 12	142.0	67.6	76.2	175.9	цт. Ц 12	65.4	61.0	95 1	124.5
111-12	-100.0 83.6	53.8	-70.5	1/3.0	112-12	65.4 66.6	63.1	-83.1	179.2
	83.0	55.6	-77.4	168.9		00.0 76.7	56.1	-87.0	174.2
	79.6	52.0	-/4.4 -66 1	129.8		63.1	67.4	-58.6	116.5
av.	82.1	53.8	-72.6	155.5	av.	67.9	62.1	-78.8	161 7
н9	100.5	62.6	<u>80 0</u>	08.2	H9	102.5	61.3	70.3	00.7
m ₁ y	-100.3	61.8	81.3	-98.5	112-2	-103.3	59.2	75.8	-90.7 -86.4
	_99.9	61.6	81.9	_94 3		-109.0	60 4	75.6	-86.9
	-100.9	60.7	81.6	-93.6		-104.7	59.7	80.0	-83.6
av.	-100.4	61.7	81.4	-95.3	av.	-107.2	60.1	77.7	-86.9
H1-7	137.1	50.4	437	80.2	Ha-7	63.2	50.1	46.2	93.8
	135.6	51.0	42.2	82.2		65.2	51.3	45.6	98.5
	138.6	51.5	41.9	81.5		65 0	50.9	45.7	96.5
	136.7	50.3	42.9	88.6		64.4	47.8	50.9	104.1
av.	137.0	50.8	42.7	83.1	av.	64.4	50.0	47.1	98.2
$\mathbf{E_1}^b$	-96 1	573	169.2	142.1	\mathbf{E}_{2}^{b}	_97 7	58.1	-173 5	-145.6
-1	-94.4	56.9	170.5	145.0	2	-99 3	57.4	-1767	-145.2
	-95.1	56.6	168.1	147.1		-100.5	57.8	-171.6	-149.4
	-94.9	57.1	168.5	152.8		-99.4	56.9	-176.0	-136.7
av.	-95.1	57.0	169.1	146.7	av.	-99.2	57.5	-174.4	-144.2

Table S1 Backbone torsion angles for optimized helical and extended structures of oligopeptides of $\gamma Ac_6 a$ residues 1 and 2^a

Hexapeptide	Hexapeptides										
H ₁	ϕ	θ	ζ	ψ	H ₂	ϕ	θ	ζ	ψ		
H ₁ -14	-95.0	60.6	69.5	-159.2	H ₂ -14	-91.9	60.8	61.8	-171.8		
	-142.8	56.1	65.3	-127.6		-143.9	58.0	66.6	-118.6		
	-149.6	56.7	65.2	-133.2		-165.7	58.4	59.1	-110.9		
	-145.0	57.9	66.7	-133.9		-158.4	57.5	53.7	-153.1		
	-147.2	58.8	66.8	-130.9		-97.7	58.1	63.3	-161.2		
	-150.2	58.1	56.9	-125.5		-132.1	61.7	53.1	-113.5		
av.	-147.0	57.5	64.2	-130.2	av.	-139.6	58.7	59.2	-131.5		
H ₁ -12	-159.1	61.4	-76.3	175.7	H ₂ -12	65.4	62.4	-82.1	172.7		
	88.4	53.4	-76.4	162.5		64.6	67.9	-75.2	168.9		
	89.5	54.9	-74.5	161.0		73.4	58.4	-89.1	-176.3		
	90.4	55.6	-76.0	165.0		65.9	62.4	-80.8	171.2		
	85.8	55.5	-77.7	174.1		75.6	58.4	-84.3	169.2		
	75.8	51.4	-66.5	132.5		64.9	69.1	-56.8	112.0		
av.	86.0	54.2	-74.2	159.0	av.	68.3	63.1	-78.0	163.0		
H ₁ -9	-100.3	62.8	80.6	-98.6	H ₂ -9	-101.8	59.4	81.8	-89.8		
	-99.9	61.8	81.3	-94.6		-116.0	57.9	73.6	-85.3		
	-99.4	61.7	81.3	-95.6		-106.7	60.7	77.6	-88.2		
	-99.9	62.2	80.6	-95.6		-111.2	59.2	75.0	-87.4		
	-99.8	61.8	81.7	-95.0		-106.9	61.7	75.5	-89.7		
	-101.3	61.6	80.7	-95.6		-104.7	58.9	79.9	-82.9		
av.	-100.1	62.0	81.0	-95.8	av.	-107.9	59.7	77.2	-87.2		
H ₁ -7	141.1	51.1	42.4	80.0	H ₂ -7	63.9	50.2	45.2	95.6		
	135.5	50.1	42.3	83.2		66.6	52.7	43.3	96.9		
	138.3	51.1	41.3	80.8		65.1	51.5	44.8	97.7		
	135.9	50.3	42.0	82.8		65.7	51.7	44.0	96.3		
	138.3	51.4	41.9	81.2		65.8	51.4	45.1	97.4		
	133.1	49.0	44.0	91.2		64.5	47.7	50.5	104.0		
av.	137.0	50.5	42.3	83.2	av.	65.3	50.9	45.5	98.0		
$\mathbf{E_1}^b$	-96.4	57.4	165.6	168.3	$\mathbf{E_2}^b$	-98.8	58.2	-172.5	-151.5		
	-94.6	57.1	166.6	162.5		-101.2	57.4	-172.4	-148.8		
	-94.0	57.1	167.7	154.5		-99.8	56.6	-173.8	-154.4		
	-95.8	55.8	168.4	139.4		-101.4	57.8	-174.2	-145.4		
	-95.6	56.2	169.3	148.0		-99.1	57.3	-175.8	-145.7		
	-96.2	57.2	165.9	165.4		-99.7	57.5	-174.5	-138.1		
av.	-95.4	56.8	167.3	156.3	av.	-100.0	57.5	-173.9	-147.3		
Octapeptide	S										

Octupepti	laes								
H ₁	ϕ	θ	ζ	Ψ	H_2	ϕ	θ	ζ	Ψ
H ₁ -14	-96.0	60.6	70.4	-156.7	H ₂ -14	-92.6	60.5	62.3	-170.8
	-145.2	56.1	64.7	-127.3		-145.4	58.0	64.0	-121.1
	-147.7	56.2	66.1	-139.1		-159.3	57.0	56.5	-118.5
	-137.1	56.9	66.4	-139.5		-151.9	58.6	56.7	-122.8
	-141.8	57.1	66.8	-130.6		-153.0	59.7	58.7	-115.9
	-151.3	57.9	65.2	-134.5		-160.5	61.1	55.1	-121.7
	-141.2	58.5	67.1	-143.5		-147.2	60.4	55.1	-134.8
	-134.8	55.9	52.3	-129.3		-135.4	59.0	46.2	-126.4
av.	-142.7	56.9	64.1	-134.8	av.	-150.4	59.1	56.0	-123.0

H ₁ -12		-161.7	62.3	-74.9	173.0	H ₂ -12	65.4	62.8	-87.4	176.8
		88.6	52.9	-78.3	168.5		75.3	54.7	-92.4	-174.7
		83.9	54.9	-73.6	163.1		64.6	65.4	-84.2	172.1
		88.0	55.3	-75.3	164.0		77.3	54.4	-92.4	-175.1
		88.4	54.5	-77.0	168.2		65.6	64.6	-88.8	178.7
		84.6	54.0	-77.1	170.1		71.1	57.0	-90.9	-175.9
		82.7	54.2	-79.0	177.3		66.5	62.8	-88.8	-177.7
		74.0	51.2	-65.8	131.1		65.7	60.2	-72.5	131.3
	av.	84.3	53.9	-75.2	163.2	av.	68.9	60.2	-87.2	174.4
H ₁ -9		-100.3	62.6	80.7	-98.3	H ₂ -9	-103.3	60.4	80.3	-89.3
		-99.5	62.0	81.0	-95.7		-112.3	58.6	75.1	-86.1
		-99.5	61.9	80.6	-96.3		-107.0	61.6	75.7	-89.2
		-100.1	61.7	81.1	-95.7		-107.9	59.2	77.2	-86.9
		-100.3	61.7	81.0	-95.7		-110.6	60.1	74.9	-88.7
		-100.1	61.7	81.1	-95.4		-105.7	60.1	77.8	-86.8
		-99.9	61.8	81.5	-94.5		-111.1	59.1	75.3	-87.7
		-100.6	61.3	81.0	-94.5		-105.2	59.3	80.1	-82.8
	av.	-100.1	61.8	81.0	-95.8	av.	-107.9	59.8	77.1	-87.2
H ₁ -7		139.8	50.4	43.3	81.2	H ₂ -7	63.6	50.6	44.8	94.7
		138.7	51.2	41.0	80.4		65.5	52.1	44.1	96.6
		135.9	50.4	42.9	81.7		66.1	52.1	42.9	95.8
		134.2	49.8	42.5	82.7		65.3	52.1	44.0	96.9
		138.9	51.5	40.7	81.2		66.2	51.2	43.4	96.9
		135.9	50.7	41.8	81.5		65.8	52.4	43.0	94.2
		136.3	50.9	41.9	82.6		65.3	51.7	44.8	96.7
		134.1	48.8	43.9	90.4		64.1	48.8	48.4	101.1
	av.	136.7	50.5	42.3	82.7	av.	65.2	51.4	44.4	96.6
$\mathbf{E_1}^b$		-96.4	57.6	166.9	163.7	$\mathbf{E_2}^b$	-96.9	57.7	-174.6	-146.3
		-93.9	57.6	165.5	159.5		-98.9	56.4	-171.7	-156.2
		-93.0	56.3	169.8	150.4		-100.9	56.4	-172.5	-156.2
		-94.0	57.6	167.4	159.2		-101.4	57.2	-174.6	-147.1
		-94.0	56.4	167.0	156.7		-99.6	57.1	-174.5	-146.0
		-93.1	57.0	168.1	151.7		-99.6	57.2	-176.1	-145.6
		-94.0	56.9	168.2	154.3		-100.1	58.4	-174.1	-141.4
		-93.9	57.1	167.7	155.6		-99.1	57.0	-175.9	-136.4
	av.	-94.0	57.1	167.6	156.4	av.	-99.6	57.2	-174.2	-146.9

^{*a*} Optimized at the M06-2X/6-31+G(d) level of theory in the gas phase. Backbone torsion angles in γ -amino acid residues are defined in Fig. 1c of the text. Torsion angles for the first residue of the **H**₁-14, **H**₁-12, and **H**₂-14 foldamers are excluded in calculating the mean values. ^{*b*} Extended structure.

		Residue	e 1	Residue	2
n	Helix type	$d(C=O\cdots H-N)$	∠N–H…O	$d(C=O\cdots H-N)$	∠N–H…O
4	H- 14	1.98	167.0	1.93	169.3
	H- 12	2.05	158.5	1.93	161.3
	H- 9	1.90	167.2	1.87	172.0
	H -7	2.07	139.1	2.26	121.7
6	H -14	1.97	168.8	1.95	165.9
	H- 12	2.05	160.9	1.91	158.5
	H- 9	1.89	167.1	1.87	171.0
	H -7	2.05	140.0	2.22	123.1
8	H -14	1.96	170.4	1.93	167.0
	H- 12	2.06	159.7	1.90	156.7
	H- 9	1.89	167.2	1.86	171.8
	H- 7	2.04	140.1	2.19	124.1

Table S2 Mean distances (Å) and angles (°) for the C=O···H–N H-bonds of helix foldamers of Ac- $(\gamma Ac_6 a)_n$ -NHMe

Table S3 Helical parameters for helix foldamer of oligo-yAc₆a peptides

п	Foldamer	m^{a}	$\Box p^b$	$\Box d^{c}$	r^d	Foldamer	m^{a}	$\Box p^b$	$\Box d^{c}$	r^{d}
4	H ₁ -14	2.5	5.2	2.1	2.9	H ₂ -14	2.5	5.3	2.1	2.9
	H ₁ -12	2.5	5.8	2.3	2.9	H ₂ -12	2.4	5.0	2.1	2.7
	H ₁ -9	2.5	8.6	3.4	1.9	H ₂ -9	2.5	8.1	3.3	2.0
	H ₁ -7	3.2	13.5	4.2	1.7	H ₂ -7	2.3	8.7	3.8	1.6
6	H ₁ -14	2.5	5.2	2.1	2.9	H ₂ -14	2.5	5.1	2.0	2.9
	H ₁ -12	2.5	5.7	2.3	2.9	H ₂ -12	3.1	5.9	1.9	2.9
	H ₁ -9	2.5	8.6	3.4	1.9	H ₂ -9	2.5	8.1	3.2	2.1
	H ₁ -7	3.1	12.9	4.2	1.7	H ₂ -7	2.3	8.7	3.8	1.6
8	H ₁ -14	2.5	5.2	2.1	2.9	H ₂ -14	2.5	5.0	2.0	2.9
	H ₁ -12	2.5	5.7	2.3	2.9	H ₂ -12	2.4	5.2	2.1	2.7
	H ₁ -9	2.5	8.6	3.4	1.9	H ₂ -9	2.4	8.1	3.3	2.0
	H ₁ -7	3.0	12.7	4.3	1.6	H ₂ -7	2.3	8.7	3.8	1.6

^{*a*} Number of residues per turn. ^{*b*} Rise per turn (pitch) (Å). ^{*c*} Rise per residue (Å). ^{*d*} Radius of helix (Å).

Conformational analysis of the $\gamma Ac_6 a$ (1) dipeptide in the gas phase

Conformational analysis of the $\gamma Ac_6 a$ (1) dipeptide, Ac-[$\gamma Ac_6 a$ (1)]₂-NHMe, has been carried out to confirm whether the helical structures are preferred in the gas phase. All DFT calculations have been carried out using the hybrid-meta-GGA M06-2X functional¹ implemented in the Gaussian 09 program.²

From the extended structure of Ac-[γ Ac₆a (1)]₂-NHMe, the 200 initial structures for optimization were generated by the systematic search of the Discovery Studio package³ using the CHARMm force field with the maximum systematic conformations = 1000 and the energy threshold = 20 kcal/mol. First, these initial structures were optimized at the HF/3-21G(d) level of theory and reoptimized at the M06-2X/6-31G(d) level of theory in the gas phase and followed by further optimization at the M06-2X/6-31+G(d) level of theory in the gas phase. We obtained the 30 local minima with $\Delta E_e < 12$ kcal mol⁻¹ at the M06-2X/6-31+G(d) level of theory. Then, at the M06-2X/6-31+G(d) level of theory. The torsion angles and relative electronic energies of the 30 local minima and two helix foldamers H_d -7 and H_d -12 at the M06-2X/cc-pVTZ/M06-2X/c-31+G(d) level of theory in the gas phase A.

References

- 1 Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.
- 2 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *GAUSSIAN 09 (Revision A.02)*, Gaussian, Inc., Wallingford, CT, 2009.
- 3 Discovery Studio (Version 2.5), Accelrys Software, Inc., San Diego, CA, 2009.

Backbone torsion angles ^{<i>a</i>}											
Conf.	ϕ_1	$ heta_1$	ζ_1	ψ_1	ϕ_2	θ_2	ζ2	ψ_2	$\Delta E_0^{\ b}$		
H_d -9 ^c	-100.2	63.0	81.0	-97.6	-100.6	61.4	81.3	-93.4	0.00		
d1	-103.1	61.0	81.5	-95.3	-126.2	47.9	36.8	49.9	2.01		
H_d-14^d	-93.2	62.0	71.1	-155.6	-139.8	56.7	52.6	-112.7	2.10		
d2	-105.9	62.2	80.1	-102.2	-157.3	60.4	-168.7	102.1	3.50		
d3	-101.8	62.7	81.3	-94.2	-94.8	58.1	-170.3	-73.2	3.80		
d4	-101.1	62.3	82.2	-95.9	-93.0	58.4	168.5	158.2	4.68		
d5	-100.7	64.2	80.3	-98.1	-161.0	54.8	55.8	-148.4	5.13		
d6	-102.8	60.6	83.3	-91.5	-96.0	62.8	-104.5	-108.7	5.26		
d7	-102.9	61.6	68.4	-179.1	-153.2	57.8	-72.8	131.8	5.29		
d8	-160.7	58.2	-97.6	-126.8	-104.4	61.7	80.8	-96.7	5.98		
d9	-95.7	58.0	168.4	156.6	-99.8	62.3	80.5	-98.1	6.39		
d10	-117.9	45.8	36.3	53.0	-104.4	61.8	81.2	-97.1	6.65		
d11	-162.6	58.7	-95.4	-129.0	-97.5	61.2	68.0	-145.7	6.66		
d12	-97.0	58.0	161.3	-171.8	-101.9	62.2	80.8	-96.2	6.74		
d13	-100.5	62.4	81.1	-97.1	-150.4	55.0	157.4	-100.5	7.06		
d14	-92.1	55.5	178.3	112.8	-145.7	59.8	-63.9	132.8	7.08		
d15	-94.9	55.8	170.6	129.5	-139.1	60.0	-63.9	130.0	7.35		
d16	-127.9	60.6	-67.6	-73.8	-162.9	56.4	49.8	71.9	7.44		
d17	-127.0	48.0	39.7	57.3	-162.5	57.1	-96.3	-119.2	8.15		
d18	-121.7	46.9	35.7	54.4	-110.8	61.3	-75.4	120.8	8.20		
d19	-160.8	57.7	-96.5	-122.4	-95.7	58.0	168.7	155.0	8.32		
d20	-104.3	63.5	-90.8	114.5	-97.9	57.7	168.3	152.0	8.41		
d21	-153.4	59.3	68.4	-174.6	-147.2	52.6	33.8	69.4	8.62		
d22	-151.2	50.4	55.3	9.9	172.1	61.6	-95.8	-107.3	8.85		
d23	-160.1	59.1	-108.3	93.2	-157.1	57.9	-93.7	-131.2	9.30		
d24	-157.5	58.6	-176.3	-54.6	-154.8	60.3	-91.1	-151.1	9.46		
E _d ^e	-95.9	57.5	167.1	157.5	-93.5	57.1	168.4	150.0	9.69		
d25	-155.7	57.2	163.3	162.2	-156.4	57.3	-95.9	-126.3	9.92		
d26	152.9	53.7	58.5	174.2	-126.4	46.2	27.2	59.1	10.29		
d27	-130.5	49.5	39.3	61.4	126.8	45.5	47.2	89.3	10.38		
H _d -7 ^f	137.6	50.5	44.0	80.3	133.4	49.4	44.1	89.9	13.50		
H_d -12 ^g	82.5	51.6	-79.4	-178.2	78.3	46.8	-69.5	137.4	21.34		

Table S4 Backbone torsion angles (°) and relative electronic energies (kcal mol⁻¹) of Ac- $[\gamma Ac_{6}a(1)]_2$ -NHMe

^{*a*} Backbone torsion angles in γ -amino acid residues are defined in Fig. 1c of the text and optimized at the M06-2X/6-31+G(d) level of theory in the gas phase. ^{*b*} Relative energies at the M06-2X/cc-pVTZ//M06-2X/6-31+G(d) level of theory in the gas phase. ^{*c*} H₁-9 structure. ^{*d*} H₁-14 structure. ^{*e*} Extended structure. ^{*f*} H₁-7 structure.

Fig. S1 The optimized helical and extended structures of oligopeptides with $\gamma Ac_6 a(1)$ residues: (a) dipeptide, (b) tetrapeptide, and (c) hexapeptide.

H₂-12

H₂-14

H₂-9

H₂-7

E₂

(d)

s10

Fig. S2 The optimized helical and extended structures of oligopeptides with $\gamma Ac_6 a$ (2) residues: (a) dipeptide, (b) tetrapeptide, (c) hexapeptide, and (d) octapeptide.

Fig. S3 Representative optimized structures of the $\gamma Ac_6 a$ (1) dipeptide at the M06-2X/6-31+G(d) level of theory.

Cartesian coordinates of helical and extended structures of octa-yAc₆a (1) peptide optimized at the M06-2X/6-31+G(d) level of theory:

Н

(1) **H**₁-14

 $E_{\rm e} = -3788.64561449$ Hartrees

	$L_{\mathfrak{E}}$		49 11010005	Н	-6 96559100	$4\ 47788800$	-0 60298200
		0 40101000	2 2 2 2 41 2 2 2	Н	-6 72053200	5 99453900	1 35176300
Н	-7.93065700	-2.43181200	3.28241000	Н	-4 96509200	5 86281300	1 26114200
Н	-8.89282500	-0.99635800	2.92430200	0	-2.46790200	1 49231300	2 40097100
Н	-9.33741400	-2.56496600	2.19999900	N	-3 80244000	-0 31187900	2.03458000
C	-8.50464900	-1.92496300	2.50045700	н	-4 76827500	-0.62141100	1 94159500
С	-7.56371100	-1.58868600	1.36653300	C	-2 71579500	-1 29060300	2 05041100
0	-6.67624300	-0.74266400	1.50784900	C C	-2.95307400	-2 41492000	1 02922900
Ν	-7.73470300	-2.26438200	0.21098300	C C	-2 53718600	-1 86452400	3 46404900
Н	-8.47549900	-2.95191200	0.17138300	н	-1 81076500	-0.74207600	1 76555400
С	-6.81914600	-2.16699500	-0.92973600	C II	-1.01070500	-3 32262700	1 44490700
С	-7.29349100	-1.14776900	-1.98256500	с ц	-4.11/82000	-3.32202700	1.44490700
С	-8.59567800	-1.61808100	-2.63746100	П	-2.03390300	-5.01/55000	0.27800500
С	-8.42391900	-3.00057800	-3.27475400	C C	-3.14320900	-1.03002300	-0.5/890300
С	-7.92751000	-4.03088800	-2.25665900	C	-3./1/24500	-2./51/2800	3.80/00100
С	-6.64766500	-3.55227100	-1.56152400	H	-1.60/29/00	-2.45049400	3.48382200
Н	-5.86661900	-1.82617400	-0.51817200	Н	-2.41068900	-1.03906000	4.1/361000
Н	-6.50852800	-1.12246400	-2.75120100	C	-3.92358700	-3.88230200	2.85622100
Н	-9.39918900	-1.64950600	-1.88502100	H	-5.06478900	-2.76207900	1.40303700
Н	-8.91051200	-0.89119300	-3.39583800	H	-4.21029600	-4.13987100	0.71764800
Н	-9.36630100	-3.33458500	-3.72237900	Н	-3.96881700	-1.14102800	-0.40817900
Н	-7.69242000	-2.92539400	-4.09137700	Н	-3.39040600	-2.67825900	-1.06902300
Н	-7.74389800	-4,99409900	-2.74435000	С	-1.88256200	-1.20181100	-0.91340800
Н	-8 72050900	-4 22037600	-1 51608100	Н	-3.55220700	-3.16027900	4.87002400
Н	-5 84139700	-3 48177000	-2 30304900	Н	-4.63121800	-2.14114000	3.92325100
н	-6 32091600	-4 26738100	-0 79706700	Н	-4.78316000	-4.50056500	3.14112000
C	-7 40356700	0.26398200	-1 41392100	Н	-3.04258000	-4.53939000	2.86420000
н	-8 04466600	0.28369200	-0 52436900	О	-0.77497500	-1.72006500	-0.73652200
н	-7 87869500	0.20505200	-0.52450700	Ν	-2.07084600	-0.05556100	-1.59421000
\hat{C}	-6.04840900	0.89227500	-1 10958800	Н	-3.03078000	0.26945200	-1.70919000
$\tilde{0}$	-5.03321200	0.67227500	-1.72844600	С	-0.98481200	0.62619500	-2.29558700
N	-5.05521200	1 87004700	-1.72844000	С	-1.04264300	2.14550300	-2.06387700
IN LI	6.01122400	2.04510100	-0.19101500	С	-1.01752500	0.29942000	-3.79515400
П	-0.91122400	2.04310100	0.01012300	Н	-0.06041000	0.23629600	-1.85733300
C	-4.88088500	2.70665400	0.09899400	С	-2.26238500	2.75658600	-2.75917100
C	-4.82040700	3.081/9400	1.58936400	Н	-0.13475500	2.55952300	-2.52440400
C	-4.8/300000	3.96352700	-0./8283800	С	-0.99764600	2,49272800	-0.57713200
Н	-4.01231600	2.08423600	-0.14/00/00	Č	-2 23283100	0 92402500	-4 48534200
С	-5.93069600	4.0/106500	1.96662600	Ĥ	-0.09320100	0 68488300	-4 24857100
Н	-3.85375900	3.58470000	1.73409500	н	-1 01039400	-0 78884000	-3 92654900
C	-4.83458400	1.84691500	2.49036300	C	-2 27788100	2 43672900	-4 25512300
С	-5.98769500	4.93889000	-0.39916500	н	-3 18468100	2.45072500	-2 30243300
Н	-3.89630300	4.45440100	-0.66839800	н Н	-2 26797500	3 84245000	-2.50245500
Н	-4.96131100	3.66625800	-1.83403900	и П	-1.817/9200	2 01/25000	-0.02033200
С	-5.90240000	5.31805600	1.08044700		-1.01/49200	2.01423000	-0.02933200
Η	-6.91735100	3.58594400	1.88457100	П	-1.11300/00	2.12867600	-0.4330/400
Н	-5.82111800	4.34772600	3.02213900		0.33631000	2.1280/000	0.03138400
Н	-5.74174700	1.25391500	2.33541700		-2.20/93000	0.09929800	-3.33/3/300
Н	-4.82032600	2.17133700	3.53862000	H	-3.15442900	0.4/184800	-4.09042000
С	-3.59429300	0.99285600	2.29671700	H	-3.1/053800	2.86699100	-4./2414400
Н	-5.93173600	5.83372900	-1.02843600	Н	-1.40637200	2.90489900	-4./3480100

С	4.36538500	4.74888400	-1.51347200
Н	6.45875400	4.21880800	-1.65065100
Н	5.46094000	3.48408300	-2.91250800
С	4.36832400	5.08594900	-0.01922900
Н	3.26693600	3.36176100	0.65915000
Н	4.30161400	4.06686200	1.89859200
Н	4.42783600	0.93362800	1.07661700
Н	5.20376100	1.80965800	2.40036400
С	6.57855200	0.72451700	1.20243400
Н	4.47931800	5.66065000	-2.11170900
Н	3.39243200	4.31255000	-1.78245800
Н	3.54723300	5.77364000	0.21670900
Н	5.30420400	5.60623200	0.23225000
0	7.67346700	1.27349600	1.12296900
N	6.40670500	-0.62060000	1.20462400
Н	5.45776000	-0.97483700	1.31654600
С	7.53747300	-1.53616400	1.33109000
С	7.45200300	-2.69407900	0.32093600
Ċ	7.63882700	-2.07859100	2.76523100
Н	8.42664800	-0.93969500	1.11155400
С	6.29979500	-3.63951300	0.67244400
Н	8.40221800	-3.23947300	0.41002800
С	7.34227500	-2.20356400	-1.12601700
С	6.48398300	-3.02494200	3.10549500
Н	8.59186700	-2.61810800	2.85965700
Н	7.67494700	-1.23303500	3.46236800
С	6.41565500	-4.17750000	2.10053100
Н	5.34860900	-3.09536200	0.57803700
Н	6.26307800	-4.46564900	-0.05092700
Н	6.36036000	-1.74867800	-1.30888900
Н	7.44345900	-3.06111600	-1.80356500
С	8.45344900	-1.21398100	-1.44344800
Н	6.60371100	-3.41169200	4.12481700
Н	5.53206100	-2.47503000	3.08454400
Н	5.56493500	-4.83165500	2.32836100
Н	7.32488500	-4.79112000	2.18547500
0	9.62857500	-1.46172200	-1.17893000
Ν	8.05617800	-0.05214300	-1.99856000
Н	7.07341800	0.08874700	-2.22191400
С	8.99980100	1.02273800	-2.21940400
Н	9.84815000	0.67377400	-2.81598700

8.48878600

9.37720000

1.82825000

1.40055200

-2.75227700

-1.26288000

0	1.39314900	2.35116800	-0.55402400	С
Ν	0.28811200	1.58752200	1.28309700	Н
Н	-0.62934100	1.49678600	1.72138600	Н
С	1.49428500	1.37750200	2.08429300	С
Ċ	1.42665800	0.05786300	2.87018800	Ĥ
Č	1 72268700	2 56486300	3 03156100	Н
H	2 31917700	1 32158300	1 36620800	Н
C	0.36623100	0 12761800	3 97324700	Н
н	2 41156600	-0.06547700	3 34295500	C
C	1 21212800	-1 14121800	1 94674900	н
C	0.66175400	2 62335100	4 13358600	Н
н	2 72008000	2.02555100	3 48122300	Н
н	1 73284200	3 49268000	2 44808800	Н
\hat{C}	0.61277200	1 30853100	4 91560700	0
н	-0.63158100	0 23515400	3 52450900	N
н	0.36128500	-0.81684100	4 53310000	н
н	0.30265300	-1.02422400	1 34759700	C II
ц	1.00601500	-1.02422400	2 55469100	C
C	2 41137100	-2.04900900	1.04560400	C
н	0.87154700	3 46247000	4 80672000	н
н	-0 32507300	2 81357700	3 68783500	C II
н	-0.17008100	1 35076400	5.68208500	н
н	1 56830200	1 16046300	5 43925400	C II
$\hat{0}$	3 55003700	-1 43873900	1 52246400	C
N	2 15155000	-1.53486400	-0 26742200	н
н	1 17242700	-1 55833900	-0.55234100	Н
$\hat{\Gamma}$	3 18631400	-1.97883300	-1 20150300	C II
C	2 93589800	-1 43123300	-2 61552400	н
c	3 26378800	-3 51332400	-1 21819000	H
н	4 13187700	-1 57143200	-0.82283500	Н
C	1 69081200	-2 06498700	-3 24557400	Н
н	3 81119500	-1 72647400	-3 21084200	C
C	2 87562400	0.09587800	-2 63325600	н
C	2.01601600	-4 13544800	-1 84934000	Н
н	4 15846200	-3 80837100	-1 78516000	Н
н	3 40164000	-3 87523000	-0 19279600	Н
C	1 78689300	-3 59287500	-3 26194400	0
н	0 79171900	-1 77057800	-2 68453400	N
н	1 56542800	-1 67624900	-4 26490600	Н
Н	2.08703700	0 47569500	-1 97443500	C
Н	2.64967000	0 43593200	-3 65329500	н
C	4 21609500	0 70756400	-2 25881800	Н
Ĥ	2 11359300	-5 22712500	-1 86839800	Н
Н	1 13701900	-3 90557200	-1 22988100	
Н	0.87579600	-4.02421500	-3.69369800	
Н	2.62358600	-3.89567000	-3.90806400	
0	5.25852300	0.28260600	-2.76824300	
Ň	4.18021900	1.72068600	-1.37493000	
Н	3.26812900	2.00411500	-1.01779200	
С	5.37278900	2.48187600	-1.00398100	
C	5.36402200	2.81598000	0.49518300	
С	5.48181600	3.75681100	-1.85056600	
Н	6.23120400	1.83493400	-1.20839600	
С	4.25328700	3.81670100	0.83040200	
Н	6.33269100	3.29036600	0.70347000	
С	5.29897300	1.54564500	1.33726400	

(2) **H**₁-12

$E_{\rm e} = -3788.51401879$ Hartrees

		$L_{\rm e} = -3/88.3140$	10/9 Haluees	Н	-6.62642700	4.61551500	2.58360700
тт	0.05050700	0 11102500	2 20151200	0	-5.17045100	-0.19396100	1.69486100
Н	-8.85950/00	0.11103500	2.30151200	N	-2.89486200	-0.41693000	1.86422800
H	-8.76528400	-1.2/045300	3.43/94600	Н	-2.04497100	0.11952500	1.70909900
Н	-/.28065600	-0.45539800	2.8///4900	С	-2.70998100	-1.86662200	1.98661200
C	-8.28836000	-0.77600500	2.59081600	Ċ	-2.72738800	-2.63628000	0.65653300
C	-8.14/99500	-1./6662300	1.4529/500	C	-3.60667600	-2.56312100	3.03102800
U	-8.00120800	-2.96815100	1.65206300	Н	-1.68707100	-1.94956200	2.36988400
N	-8.15/3/500	-1.222/2100	0.21156600	C	-4 15771900	-2 86696400	0 16177900
Н	-8.17163300	-0.21152600	0.11593900	H	-2 33642100	-3 63377800	0 92029200
C	-/./6646/00	-2.00948/00	-0.95045700	C	-1 71246300	-2 10821700	-0 36050800
C	-7.420/9900	-1.09904/00	-2.14040300	Č	-4 97234600	-3 05846800	2 54092500
C	-8.66415500	-0.40267200	-2.71741800	H	-3 02896400	-3 43261200	3 37609900
C	-9.73879100	-1.42443200	-3.09612100	н	-3 72216900	-1 90086600	3 89754400
С	-10.10379700	-2.29567900	-1.89251000	C II	-4 89722700	-3 74630300	1 17581300
С	-8.86899500	-3.00630100	-1.34068300	н	-4 67215900	-1 90666700	0.06513800
Η	-6.86861900	-2.57994700	-0.67511500	н	-4 13877100	-3 34101800	-0.82966800
Η	-7.07060500	-1.79617200	-2.91789800	и П	-1 63233700	-2 84574200	-1.17300500
Η	-9.06711000	0.30747900	-1.98963500	и П	-0.71678200	-2.04374200	0 10200700
Η	-8.36726600	0.18691000	-3.59481500	C II	1 06646600	-2.07129800	1.07/21200
Η	-10.62614900	-0.91102900	-3.48432500	с u	-1.90040000	-0.78447800	-1.07421200
Η	-9.36396900	-2.06868400	-3.90543800	п u	-5.59084500	-3.74987000	2 46248200
Η	-10.87037800	-3.02940200	-2.16707900	П	-5.05999700	-2.21973400	2.40246200
Н	-10.53323400	-1.66285800	-1.10469100	П	-3.91/83300	-5.90279200	1.26200000
Η	-8.46497800	-3.68576300	-2.10489700	П	-4.30834900	-4.70848300	1.20290000
Н	-9.11212300	-3.60839200	-0.46150000	U N	-3.08529700	-0.29644500	-1.2111/500
С	-6.22729800	-0.16252000	-1.89759300	IN II	-0.84091200	-0.28280400	-1.04590800
Η	-5.91384100	0.24196300	-2.87097600	H C	0.03280600	-0.6/128500	-1.29883600
Н	-5.36720000	-0.73176500	-1.52655600	C	-0.70320900	0.79719000	-2.62/42/00
С	-6.42971700	1.05698300	-1.00031800	C	-0.57794300	2.20495300	-2.02639600
0	-7.54056900	1.43902100	-0.62990900	C	-1./3323100	0./8/08900	-3.//594600
Ν	-5.28742300	1.72725100	-0.73229700	Н	0.26360000	0.58206600	-3.09531600
Η	-4.42680300	1.22154400	-0.93559100	C	-1.94186500	2.74173500	-1.58851400
С	-5.13195400	2.96957900	0.03264300	Н	-0.26042300	2.83277800	-2.8/584000
С	-4.93680300	2.76403100	1.54385400	C	0.56714500	2.33515400	-1.0196/800
С	-6.19180200	4.06256900	-0.23387300	C	-3.04626600	1.54559400	-3.53772300
Н	-4.18538100	3.37387800	-0.34572900	Н	-1.22075900	1.25318100	-4.628/4900
С	-6.26988700	2.51553100	2.25505200	Н	-1.93891000	-0.25023900	-4.06413900
Н	-4.57876300	3.74516800	1.89956900	C	-2.84286700	2.88537600	-2.82109800
С	-3.80256200	1.79933600	1.89264600	Н	-2.37755300	2.05122600	-0.86014500
С	-7.45003700	4.06234800	0.65027500	Н	-1.81910200	3.71045100	-1.08549500
Н	-5.66686800	5.01405700	-0.07076600	Н	0.74527400	3.40626700	-0.84417600
Н	-6.47360800	4.03910400	-1.29251500	Н	1.49481900	1.95007200	-1.46500300
С	-7.14627400	3.76245000	2.12199900	С	0.40752600	1.73901000	0.37566300
Н	-6.76655900	1.65029500	1.80861900	Н	-3.53179200	1.71723100	-4.50598900
Н	-6.08756500	2.27721200	3.31117600	Н	-3.71484100	0.92262400	-2.94656500
Н	-3.54116100	1.95407700	2.94956400	Н	-3.82108900	3.29754600	-2.54567700
Н	-2.89849800	2.06111400	1.32666500	Н	-2.37899300	3.60848300	-3.50812400
C	-4.05089900	0.29652900	1.76787100	0	-0.68575600	1.50880100	0.88478700
Н	-7.93202000	5.04395100	0.56176400	Ν	1.59383800	1.62051600	1.02474800
Н	-8.14921900	3.31524500	0.27840300	Н	2.41943200	1.64485900	0.43093900
Н	-8.08688400	3.63400500	2.66999200	С	1.84678800	1.30998300	2.43437300
	0.00000100	2.02 100200		С	1.94960100	-0.19020300	2.74469300

500	3.45174200	Н	5.27149200	2.41498400	2.62282300	
400	2.60152800	Н	7.82787700	1.98512100	2.24721600	
300	2.82620700	Н	8.40984300	1.92408300	0.59532000	
700	3.76468700	С	7.21949900	0.25831800	1.19526900	
600	1.88940900	Н	3.51813300	5.10804200	-0.24997100	
400	3.82932800	Н	3.24380500	3.39074400	-0.50067800	
100	4.36292300	Н	3.29050300	3.77122400	1.88828400	
000	3.09996400	Н	4.77933700	4.70472000	1.78916100	
700	3.99942200	0	6.11929600	-0.22065400	0.96067600	
000	1.87964400	Ν	8.32275700	-0.47289800	1.52014300	
900	2.95557600	Н	9.16342900	0.07225100	1.65085300	
100	2.37069300	С	8.51537700	-1.92729500	1.63215500	
200	1.90557800	С	8.57395800	-2.65374800	0.27506400	
900	0.44041200	С	7.56818400	-2.65069100	2.60717900	
100	4.76340300	Н	9.51840500	-2.00032100	2.07140400	
800	3.06227200	С	7.17957300	-2.89773900	-0.31024200	
000	4.10951800	Н	8.99169700	-3.64655800	0.50506300	
300	4.92679100	С	9.58046700	-2.01502400	-0.69431800	
300	-0.00926000	С	6.21026900	-3.06760300	2.03419100	
900	-0.24592300	Н	8.10178900	-3.55817100	2.92060300	
000	0.17438400	Н	7.44198400	-2.03496400	3.50389700	
400	-1.58870800	С	6.34626100	-3.73887200	0.66418100	
200	-2.72809900	Н	6.69746300	-1.93717200	-0.50995000	
000	-1.89888300	Н	7.27759700	-3.41743700	-1.27240600	
400	-1.57732300	Н	9.63118300	-2.63579200	-1.59772200	
800	-3.04864900	Н	10.57915800	-2.03627700	-0.23902600	
600	-3.60865100	С	9.26577200	-0.60918400	-1.17549000	
800	-2.56531800	Н	5.73062700	-3.75825700	2.73700000	
200	-2.48483800	Н	5.56551100	-2.19203500	1.95438200	
300	-2.63423100	Н	5.34938900	-3.93063500	0.25034600	
100	-0.99915700	Н	6.82962600	-4.71925800	0.78394900	
300	-3.53924400	0	8.18174800	-0.28961500	-1.65012700	
800	-2.14844400	Ν	10.28620500	0.28805500	-1.08825100	
300	-3.81477700	Н	11.20598700	-0.05861200	-0.85798800	
300	-3.53935300	С	10.19080000	1.57196000	-1.76238700	
200	-2.33952400	Н	9.28174800	2.08723500	-1.44469000	
700	-1.57776700	Н	11.05459100	2.18004400	-1.49299700	
000	-2.93142700	Н	10.15057500	1.45287100	-2.85002200	

С	0.92569200	2.01611500	3.45174200
Н	2.84708200	1.72636400	2.60152800
С	0.56357700	-0.83003300	2.82620700
Н	2.36733900	-0.22858700	3.76468700
С	2.98473400	-0.92458600	1.88940900
Ċ	-0.37930500	1.29981400	3.82932800
Ĥ	1.53081500	2.11938100	4.36292300
Н	0 71613600	3 03268000	3 09996400
C	-0 20556200	-0 21345700	3 99942200
н	0.03988100	-0.66268000	1 87964400
Н	0.65956800	-1 91660900	2,95557600
н	3 19496600	-1 89058100	2 37069300
Н	3 93521200	-0 37294200	1 90557800
C	2 65559300	-1 27691900	0 44041200
н	-0 75674000	1 73274100	4 76340300
н	-1 12810000	1 48989800	3 06227200
н	-1.19259200	-0 67788000	4 10951800
н	0 3/670/00	-0.42487300	4.02670100
\cap	1 51367600	1 28033300	0.00026000
N	2 75241000	-1.28955500	-0.00920000
	J. 7 J241900	-1.08700900	-0.24392300
П	4.04230900	-1.45545000	0.1/430400
C	2 88751000	-2.20004400	-1.388/0800
C	2 82706700	-1.23631200	-2.72809900
U U	2.82/00/00	-3.38/91000	-1.89888300
H C	4.82578200	-2./54/9400	-1.5//32300
C	2.49158300	-0./0131800	-3.04864900
Н	4.19953800	-1.82428600	-3.60865100
C	4.992/5100	-0.1930/800	-2.56531800
C	1.4/533900	-2.95/6/200	-2.48483800
Н	3.32429300	-4.03505300	-2.63423100
Н	2.6/864000	-3.99588100	-0.99915700
C	1.60813400	-1.853/8300	-3.53924400
Н	2.0/254100	-0.24199800	-2.14844400
H	2.561/8/00	0.08298300	-3.814///00
H	5.14348/00	0.29277300	-3.53935300
H	5.94325900	-0.69522200	-2.33952400
С	4.81561000	0.95851700	-1.5///6/00
H	0.99404500	-3.83565000	-2.93142700
H	0.82/00500	-2.61239900	-1.68111400
H	0.608/9500	-1.4937/600	-3.81230400
H	2.05276600	-2.26689000	-4.45639000
U N	3./3848000	1.2/241300	-1.0//45500
N	5.9/025800	1.65044900	-1.41319400
Н	6.80415200	1.16/84800	-1./338/400
C	6.22129800	2.90121600	-0.69668300
C	6.42518900	2.75421100	0.82161400
С	5.23535600	4.050/1400	-0.99403200
H	/.18/20800	3.22650500	-1.10865000
C	5.09059600	2.58910400	1.55326700
H	6.82770800	3.73183600	1.13395400
C	7.51772200	1.75742800	1.21805700
C	3.96/77200	4.11533000	-0.13186200
H	5.80459300	4.97568500	-0.82962300
H	4.97541500	4.02867000	-2.05752900
C	4.24325600	3.85008500	1.35155000
Н	4.57795100	1.70690000	1.15907700

(3) H₁-9

$E_{\rm e} = -3788.622518$ Hartrees

	1	$L_{e} = -3/88.02231$	8 Hartrees				
		C		Н	8.45669200	4.62435400	-0.15756800
Н	14.90689500	2.72833400	-0.31600800	0	5.61748400	0.52388500	-1.49644300
Н	14.96126300	1.93036200	1.25591100	Ν	6.50003600	-0.96558600	-0.01822100
Н	15.63431500	1.10761300	-0.17457300	Н	7.35842600	-1.23278000	0.46897900
C	14 83416900	1 75917800	0 18410200	С	5.23805200	-1.58004500	0.39301100
Č	13 44842400	1 20300900	-0.05379900	С	4.74145700	-1.00693000	1.73919200
õ	12 45039800	1 82631000	0 30955300	С	5.41381500	-3.09999000	0.50217000
Ň	13 37734400	0.00357800	-0 67535700	Н	4.51378100	-1.34892800	-0.39609700
Н	14 24822800	-0 42884500	-0.95221800	С	5.72447000	-1.36129300	2.86056200
C	12 13234800	-0 64342900	-1 09779900	Н	3.78923800	-1.51227900	1.96609800
C	11 68244900	-1 73907200	-0.10800600	С	4.45377300	0.50393900	1.67008500
c	12 71071100	-2 87423500	-0.07146700	С	6.36002800	-3.48903800	1.64321200
C	12 91432800	-3 47954600	-1 46406000	Н	4.42365900	-3.54051800	0.68203900
C	13 31/80700	-2 41613000	-2 48995000	Н	5.77442000	-3.49248000	-0.45534000
C	12 22565200	1 24/23800	-2.48995000	С	5.90881400	-2.87755900	2.97283200
с u	12.32303200	-1.24433800	-2.49000700	Н	6.69835800	-0.88698400	2.67014600
п u	10.74758000	0.13200900	-1.13034300	Н	5.35127700	-0.95504100	3.80827200
п	10.74738000	-2.13990400	-0.30984300	Н	5.25244800	1.02378300	1.12801200
п	13.00391000	-2.4951/500	0.32281500	Н	4.40695400	0.91044000	2.68514600
п	12.3/131300	-3.04004500	0.02/91100	С	3.09212200	0.76013200	1.04911300
Н	13.66/16400	-4.2/459100	-1.42//8000	Н	6.40326000	-4.58122600	1.72493800
Н	11.9/348400	-3.94813500	-1.78519400	Н	7 38130200	-3 15308800	1 42209800
H	13.37089400	-2.85374500	-3.49242900	Н	6 63634400	-3 10954800	3 75859600
Н	14.33261400	-2.06011400	-2.26/9/000	Н	4 95341200	-3 32993900	3 27683900
Н	11.34926500	-1.60285000	-2.84669800	0	2 07295500	0.66425200	1 74776800
Н	12.64988800	-0.46103600	-3.19117500	N	3.06658700	1.03882500	-0.26511200
С	11.36781800	-1.18152100	1.29083400	н	3 95509500	0.98719300	-0.76937700
Н	12.13376500	-0.46322000	1.60269100	C II	1 83919300	1 27495300	-1.02322000
Н	11.35417000	-2.00369600	2.01294100	C	1 /1338100	0.02126600	-1.81836800
С	9.97539300	-0.57444100	1.31284600	C	2 04041100	2 46074600	1 07503600
0	8.98731400	-1.31495600	1.40819700	с u	2.04041100	2.40074000	-1.97595000
Ν	9.89313200	0.75911600	1.17276700		2 46270400	0.20862200	-0.28343300
Η	10.76457700	1.26213200	1.00215200		2.402/0400	-0.30602200	-2.88034700
С	8.63401900	1.50238300	1.13118700	п	0.48103000	0.28119700	-2.34400900
С	8.22598700	1.84260000	-0.31970900	C	1.10001200	-1.18280700	-0.90896600
С	8.76982000	2.78811400	1.95636300	C II	3.05844600	2.14534900	-3.07693300
Н	7.87953800	0.85112600	1.58610600	H	1.068/8200	2.69520200	-2.43223900
С	9.25645900	2.78708600	-0.94910800	Н	2.34821900	3.33952200	-1.39810500
Н	7.27203700	2.39031400	-0.26131000	C	2.6/20/900	0.8/389600	-3.83/56500
С	7.98210800	0.58685000	-1.17730300	H	3.41802300	-0.56679600	-2.40628900
С	9.76739800	3.76886200	1.33081800	H	2.13840500	-1.19244500	-3.44910200
Н	7.77941900	3.26004800	2.01156400	Н	1.86133000	-1.27295300	-0.11875200
Н	9.06370900	2.53143800	2.98031000	Н	1.12295800	-2.10021900	-1.50529600
С	9.40651500	4.07081000	-0.12664600	С	-0.29490200	-1.07426200	-0.33536900
H	10 23038700	2 28080600	-1 02303500	Н	3.12593000	2.99423300	-3.76698800
Н	8 94511700	3 02925300	-1 97234300	Н	4.05817200	2.01432500	-2.64334000
н	8 76146500	-0.16231500	-0 99468900	Н	3.44302800	0.62913900	-4.57676000
н	8 00899000	0.86111700	-2 23644800	Н	1.73953000	1.05199500	-4.39308300
C	6 59443500	0.02704700	-0 91879500	0	-1.26589100	-1.43440100	-1.01614200
н	9 78527400	4 69486800	1 91679600	Ν	-0.40825200	-0.53427600	0.88989300
н	10 78/30000	3 35720500	1 37300700	Н	0.44752500	-0.17620700	1.32114000
и U	10.70433300	5.55729500 A 71925200	1.5/509/00	С	-1.68541800	-0.31259200	1.56544000
11	10.10/30300	4./1023200	-0.37043700	С	-2.13712500	1.16048800	1.45406100

~17	7
SL /	

С	-1.56926700	-0.71721600	3.04043300	Н	-8.20147700	3.00001100	-2.53551500
Н	-2.41205200	-0.96192500	1.06484400	Н	-8.39520600	-0.20703500	-1.59627400
С	-1.14975900	2.07138100	2.19238100	Н	-9.13050900	0.83459500	-2.83260000
Н	-3.10584700	1.23660900	1.97282100	С	-10.56414800	-0.00551700	-1.53786500
С	-2.36199300	1.60057200	-0.00457000	Н	-7.37423900	4.61370000	1.37809600
С	-0.61565200	0.19931300	3.81372000	Н	-6.37460500	3.28115800	0.81640300
Н	-2.57236800	-0.65947900	3.48514900	Н	-6.98570000	4.67131000	-1.11282600
Н	-1.24519400	-1.76220000	3.10435900	Н	-8.69889600	4.57033400	-0.70030100
С	-1.02010600	1.66870300	3.66507600	0	-11.52958200	0.49030500	-2.13116400
Н	-0.16238200	2.02123400	1.71050100	Ν	-10.67099900	-0.99347300	-0.63022100
Н	-1.49126400	3.11066300	2.11437300	Н	-9.81841700	-1.26456900	-0.13570600
Н	-1.55368300	1.23201100	-0.64744800	С	-11.94120800	-1.59011800	-0.21993800
Н	-2.36948900	2.69376300	-0.05601400	С	-12.42339800	-1.02478500	1.13502200
С	-3.72462400	1.14374100	-0.49468000	С	-11.79027900	-3.11459500	-0.13217300
Н	-0.61066700	-0.08691800	4.87179900	Н	-12.66453300	-1.33551700	-1.00152000
Н	0.41239400	0.07144800	3.45117500	С	-11.44719200	-1.41781000	2.24993900
Н	-0.28866100	2.31256800	4.16610000	Н	-13.38771300	-1.50894300	1.35416600
Н	-1.98686000	1.83196200	4.16380400	С	-12.67249200	0.49260700	1.08998100
0	-4.73102200	1.81020500	-0.21459800	С	-10.84615100	-3.53496000	0.99933800
Ν	-3.76729400	-0.01146600	-1.17995400	Н	-12.78625800	-3.54234200	0.04635400
Н	-2.89280100	-0.53561100	-1.26475300	Н	-11.43844600	-3.49924700	-1.09634700
С	-5.00097300	-0.61838200	-1.67715400	С	-11.28781600	-2.93846800	2.33890000
С	-5.48338400	-1.75973500	-0.75500400	Н	-10.46454400	-0.95811200	2.06850300
С	-4.77832900	-1.14957000	-3.09909000	Н	-11.81378100	-1.02029500	3.20415500
Н	-5.74951600	0.18121200	-1.69632600	Н	-11.86061300	0.99615600	0.55004600
С	-4.46731200	-2.90772900	-0.75633300	Н	-12.69632600	0.88538700	2.11140200
Н	-6.41709200	-2.14772100	-1.19219400	С	-14.03114300	0.81306100	0.48264000
С	-5.81130200	-1.27154800	0.66804300	Н	-10.81563300	-4.62922400	1.06359000
С	-3.79025200	-2.32076500	-3.12473200	Н	-9.82149500	-3.20679100	0.78170000
Н	-5.74942200	-1.48189700	-3.49101000	Н	-10.56428900	-3.19573200	3.12109700
Н	-4.43142100	-0.33125000	-3.74023300	Н	-12.25124600	-3.37989600	2.63464700
С	-4.23222000	-3.43733800	-2.17463200	0	-15.05196600	0.79459600	1.16658300
Н	-3.51306000	-2.56393900	-0.33144800	Ν	-14.04991800	1.08210000	-0.84141700
Н	-4.83451000	-3.71287200	-0.10844600	Н	-13.19303400	0.97289200	-1.38342100
Н	-5.04309400	-0.57400200	1.02201900	С	-15.30796100	1.31640900	-1.51862300
Н	-5.83601600	-2.12854000	1.34822600	Н	-15.84263600	2.14542700	-1.04626300
С	-7.19741800	-0.65275900	0.71296600	Н	-15.10193200	1.56309800	-2.56138700
Н	-3.70540600	-2.70566300	-4.14759600	Н	-15.95433000	0.43264400	-1.47440700
Н	-2.78799600	-1.97985000	-2.83496700				
Η	-3.48145000	-4.23537100	-2.15678800				
Н	-5.16647700	-3.88274500	-2.54721800				
0	-8.19199700	-1.38391200	0.81769800				
Ν	-7.26864700	0.68306200	0.58168500				
Η	-6.39416200	1.18063100	0.39778900				
С	-8.52431300	1.43176300	0.54574300				
С	-8.92713500	1.79204800	-0.90186200				
С	-8.39013000	2.70631900	1.38849700				
Н	-9.28340000	0.77830900	0.98928300				
С	-7.89387000	2.74464800	-1.51420000				
Η	-9.88114700	2.33925000	-0.83906100				
С	-9.16942700	0.54805200	-1.77710100				
С	-7.39046400	3.69533700	0.77975400				
Η	-9.38119100	3.17677700	1.44824800				
Η	-8.09828400	2.43472900	2.40940600				
С	-7.74813300	4.01756700	-0.67431200				
Η	-6.91865800	2.24187300	-1.58990800				

(4) **H**₁-7

$E_{\rm e} = -3788.52355941$ Hartrees

		f = -1/88 - 7/107	1941 Haritees				
	1	2 _e 5700.52555		Н	10.36883700	3.99903400	-1.26291500
н	18 08759700	0 67332900	2 26217600	0	9.08702400	-1.70372500	0.37070300
н	17 79513500	2 31750300	1 69076600	Ν	7.20688900	-0.46361900	-0.10079400
н	16 52635000	1 45705800	2 60580500	Н	6.81294000	0.10710100	-0.84826800
C	17 32322200	1 3/81/800	1 86580000	С	6.17068600	-0.99480200	0.79435000
C	16.84705200	0.70041700	0.52015200	С	5.42547300	0.17715700	1.47681200
$\hat{\mathbf{O}}$	17 60250300	0.79941700	0.32913800	С	6.66535400	-1.98692000	1.85395300
N	17.00239300	0.78480300	-0.43434300	Н	5.44903600	-1.52256400	0.15173300
	15.57025000	0.51090000	0.34/80000	С	6.28068000	0.82866000	2.56727800
H C	15.02/02/00	0.5/240400	1.363/0800	Н	4.54056800	-0.27504500	1.95262000
C	14./23/3/00	-0.12/44/00	-0.56414400	С	4.93108300	1.25489300	0.49004900
C	13.94522500	-1.4000/400	-0.15336500	Č	7.49377700	-1.33469700	2.96252500
C	14.85689900	-2.63062100	-0.13066300	н	5 75925100	-2 42429500	2 29876400
C	15.54183800	-2.85543700	-1.4/8/3/00	Н	7 22300400	-2 79649700	1 38046000
C	16.33616900	-1.61364600	-1.88526600	C	6 73107500	-0 18462800	3 61960100
С	15.44571400	-0.37009700	-1.89546300	н	7 16484600	1 28233900	2 09359100
Н	13.98627300	0.67491500	-0.72762000	Ц	5 71613300	1.20235700	3 03162500
Н	13.18159500	-1.54540800	-0.93436000	и Ц	5 77077800	1.04729400	0 16596000
Η	15.62161700	-2.48118300	0.64541500	11 U	<i>J.77077800</i> <i>A.21548000</i>	1.0/522000	1.00652800
Η	14.27144100	-3.51191800	0.16159800	П	4.21546000	1.90332000	1.00032800
Н	16.19799700	-3.73219300	-1.42684400		4.31302300	0.04030700	-0./3/04800
Η	14.77907400	-3.07365900	-2.24108300	п	7.73970900	-2.09290000	3.70829300
Η	16.77914600	-1.75042300	-2.87872900	П	8.43000400	-0.9669//00	2.5598/500
Н	17.16650100	-1.45134000	-1.18858100	H	7.35438700	0.30/62/00	4.3/500400
Н	14.65272800	-0.50670300	-2.64593500	Н	5.84739600	-0.57810500	4.14336700
Н	16.02142800	0.51220000	-2.17792500	0	5.00753800	0.45729300	-1./6220200
С	13.21615000	-1.26767900	1.19906800	N	3.03201600	0.25054100	-0.59781900
Н	13.93755200	-1.34109300	2.01924800	Н	2.55814200	0.63994800	0.21697900
Н	12.50761300	-2.09805000	1.30327400	C	2.08748400	-0.36869300	-1.53591000
С	12.51187600	0.07337400	1.34015600	С	1.36855500	-1.54954900	-0.84035500
Ō	13.07578200	1.01373600	1.90259300	С	2.68977700	-0.82937900	-2.86871800
Ň	11 30902400	0 13033300	0 72253900	Н	1.33116600	0.39923500	-1.76034200
Н	10 90796300	-0 77475500	0 47936800	С	2.29191500	-2.76422600	-0.70855600
C	10 31547100	1 20956600	0.66914800	Н	0.53273800	-1.81888500	-1.50582700
c	9 74247800	1 31105400	-0 76469400	С	0.77762400	-1.19067700	0.53902800
C	10 81538600	2 58496200	1 12599900	С	3.57650500	-2.07026500	-2.74929600
н	9.49368300	0.91215300	1 33928400	Н	1.83321500	-1.06816000	-3.51630300
C	10 76061600	1 02082100	1.33720400	Н	3.23653400	-0.00894600	-3.33684100
с ц	8 87681200	1.92982100	-1.72779100	С	2.83409100	-3.21719300	-2.06429900
C	0.23081200	0.02/02100	-0.08/90400	Н	3.13295700	-2.49328000	-0.05152300
C	9.23981200	2 222 46000	-1.52985400	Н	1.75197000	-3.58002300	-0.21145900
с u	0.02068800	3.22340000	1 10042200	Н	1.57702800	-1.14547600	1.28631600
п	9.92008800	3.22204400	1.19043200	Н	0.08488500	-1.98391400	0.84363700
П	11.24504400	2.51/08000	2.12040200	С	0.09157300	0.16742500	0.53488300
C	11.22488600	3.30813400	-1.25/15100	Н	3.91116200	-2.37232500	-3.74848600
H	11.62/96200	1.25550100	-1./9665600	Н	4.47821300	-1.81588800	-2.17975800
H	10.32281300	1.98812400	-2.73258900	Н	3 49672000	-4 08084300	-1 93610000
Н	10.08900300	-0.64190400	-1.65953600	Н	1 99721300	-3 54897500	-2.69637400
H	8.61240400	0.16292100	-2.20708500	0	0 72283900	1 17759600	0.85561200
С	8.49051000	-0.84651100	-0.28464600	N	-1 17648800	0 14497400	0.06887500
Н	12.07949800	4.22185400	0.51601300	H	-1 60945400	-0 77767900	0.04428100
Н	12.73249400	2.63271600	0.14411300	C II	-2 16580300	1 22296600	-0.05623200
Η	11.96533200	3.71488500	-1.95535100	C	_2 91430800	1.07677400	-1 40260400
				U	-2.21737000	1.0/0//400	-1.40207400

0.07334300	Н	-10.76609000	-3.43781200	1.10345500	
0.75391800	Н	-10.85461300	-0.73807300	2.02125800	
-2.58115200	Н	-12.37122300	-1.63568700	1.89294600	
-1.34660800	С	-12.39796900	0.39462400	1.11658400	
-1.64365300	Н	-8.93101000	-3.08429700	-2.78632900	
-1.11289600	Η	-8.24037600	-2.17659800	-1.44892000	
0.12295800	Н	-9.15221200	-4.32409200	-0.59696300	
1.01121200	Η	-10.71996800	-3.98430100	-1.32789700	
-2.43387500	0	-11.74834800	1.44089000	1.16429300	
-2.63288200	Ν	-13.69961000	0.28692200	0.76355400	
-3.51760200	Н	-14.12429200	-0.62034200	0.95185000	
-1.96360700	С	-14.71327600	1.31942800	0.51150700	
-2.45480900	С	-15.48669700	0.98790400	-0.78757000	
-0.37984000	С	-14.19042600	2.76070400	0.45667400	
-0.97790900	Н	-15.42214400	1.25557200	1.35015300	
-1.12277100	С	-14.65119400	1.29668400	-2.03409200	
-3.27980700	Η	-16.36375200	1.65433400	-0.78657700	
-2.46494800	С	-15.99328200	-0.46795200	-0.86272900	
0.34934400	С	-13.39449400	3.08497700	-0.80893100	
-0.11785600	Н	-15.08270300	3.40287500	0.48661400	
-0.90603200	Н	-13.60167600	2.97843900	1.34945200	
0.98721000	С	-14.19821300	2.75566500	-2.06631600	
1.50346400	Н	-13.76708100	0.64094200	-2.03220300	
2.15816100	Н	-15.22933600	1.04649500	-2.93284900	
0.56162100	Н	-15.15345800	-1.13564400	-1.08402300	
2.31506200	Н	-16.70300300	-0.55212900	-1.69413200	
2.17462500	С	-16.61274000	-0.95347700	0.43263700	
0.39029100	Н	-13.11549800	4.14479700	-0.79794600	
2.99689900	Н	-12.45992200	2.51218700	-0.80325600	
2.79296900	Н	-13.60109700	2.94520900	-2.96539600	
1.79623300	Н	-15.08093600	3.40916300	-2.12705700	
3.49003800	Ο	-15.92961900	-1.45335000	1.32675300	
1.64748900	Ν	-17.94218300	-0.76326200	0.58541500	
2.66468000	Н	-18.47868500	-0.38464200	-0.18128800	
-0.14919200	С	-18.61583200	-1.15957600	1.81059500	
0.85085100	Н	-18.15446200	-0.66499400	2.66904500	
-0.63235300	Н	-19.66520600	-0.87101500	1.74434700	
3.84562100	Н	-18.54223600	-2.24088200	1.95719500	

С	-1.60555700	2.64394100	0.07334300
Η	-2.89610700	1.07380300	0.75391800
С	-2.02172200	1.47862100	-2.58115200
Н	-3.75786200	1.78294400	-1.34660800
С	-3.49582300	-0.33268900	-1.64365300
Ċ	-0 73485200	3 06078800	-1 11289600
н	-2.48117900	3 30791300	0 12295800
н	-1.05864100	2 75052100	1 01121200
\hat{C}	-1 48830400	2.90368600	-2 43387500
ч	-1.17653100	0.77402700	-2.43387300
п П	-1.17055100	1 26704000	-2.03288200
п	-2.36525200	1.30/94000	-5.51/00200
п	-2.70192100	-1.01604800	-1.96360700
Н	-4.23124600	-0.2//55100	-2.45480900
C	-4.10/40200	-0.91882600	-0.3/984000
Н	-0.41044600	4.09908000	-0.97790900
Н	0.17469700	2.44779200	-1.12277100
Н	-0.83685800	3.15128100	-3.27980700
Η	-2.33078300	3.61022200	-2.46494800
Ο	-3.43043300	-1.64726500	0.34934400
Ν	-5.35919400	-0.48251600	-0.11785600
Н	-5.84352500	-0.05387900	-0.90603200
С	-6.27219500	-0.80213900	0.98721000
С	-6.92956300	0.50030500	1.50346400
С	-5.64389600	-1.56705200	2.15816100
Ĥ	-7.06561000	-1 43575200	0 56162100
C	-5 93973400	1 34161500	2 31506200
н	-7 73987400	0 17407000	2 17462500
$\hat{\mathbf{C}}$	-7 55687500	1 36552700	0.30020100
C	-7.55087500	0.72280800	2 00680000
	-4.08248200	-0.72289800	2.33083300
п	-0.48349900	-1.88131000	2.79290900
П	-5.14948800	-2.40991700	1./9023300
C	-5.35499900	0.55850000	3.49003800
Н	-5.12532400	1.66290100	1.64/48900
Н	-6.43946300	2.25398300	2.66468000
Н	-6.77285400	1.90756400	-0.14919200
Η	-8.21625400	2.11047400	0.85085100
С	-8.30445700	0.52370100	-0.63235300
Η	-4.32674400	-1.31846200	3.84562100
Η	-3.79907100	-0.47745800	2.39493400
Η	-4.63980000	1.18073100	4.04017300
Η	-6.16254500	0.30565300	4.19286000
Ο	-7.73226000	0.14612600	-1.65739000
Ν	-9.55316800	0.17448800	-0.25067100
Н	-9.94245900	0.72445400	0.51429700
С	-10.58025200	-0.61520900	-0.94139700
Ċ	-11.22571000	-1.60222600	0.06042000
Ċ	-10 10083200	-1 37706800	-2 18277400
н	-11 35616800	0.09700600	-1 26260300
$\hat{\mathbf{C}}$	-10 27810900	-2 75996000	0.39156200
ч	-12 10760800	_2 01282000	_0.45638200
C		-2.01202000	1 36638800
C	0 10244000	-0.73033000	1.30028800
	-7.10344800	-2.33/09000	-1.030/3000
Н	-11.01148900	-1./3806200	-2.00844900
H	-9.01/42100	-0.69301900	-2.88195000
C	-9.84052100	-3.51400800	-0.86380600
Н	-9.39132200	-2.35058800	0.89983400

 $(5) E_1$

$E_{\rm e} = -3788.53657067$ Hartrees

				0	-7 19697100	2 55206400	-0 38781400
Н	-18.54969900	0.52532100	0.50985700	N	7 08/1/1500	2.33200400	1 58000600
Н	-17.67892200	1.34987200	-0.78516100	н	-8 71604100	1 10717400	2 01729200
Н	-18.16280800	-0.35598400	-0.98590700	C II	-6 86030300	2 21065600	2.01729200
С	-17.80016500	0.39195200	-0.27584300	C C	-5.78317600	1 13135000	2.40000800
С	-16.48228300	0.01856800	0.37401600	C C	7 38663400	2 68073600	2.37793000
0	-15.82037400	0.83994100	0.99434400		-7.38003400	2.08973000	1 95125900
Ν	-16.09994600	-1.28083700	0.23459700	П	-0.44101000	3.03303400	2 44701000
Η	-16.70698100	-1.90480900	-0.27884600	C II	-0.28900800	-0.02440000	2 10221000
С	-14.92051600	-1.83982600	0.89468300	П	-4.94081300	1.00431800	5.10251900
С	-13.68631100	-1.85035700	-0.02701700	C C	-5.20448800	0.03/3/200	1.22904100
С	-13.86969100	-2.84570200	-1.17796700	C II	-/.8/944300	1.53365500	4.63889100
С	-14.16213700	-4.25490200	-0.65747000	Н	-6.55958/00	3.19508000	4.2/821800
С	-15.38896500	-4.26310100	0.25718800	Н	-8.1/649200	3.43413800	3.609/6600
С	-15.22857400	-3.25434300	1.40046100	C	-6.79021400	0.47202600	4.80669600
Н	-14.72136400	-1.17819400	1.74468400	Н	-7.10636300	-0.54375900	2.92123800
Н	-12.83624200	-2.19355500	0.57979800	Н	-5.48442600	-0.75486400	3.58500300
Н	-14.70055300	-2.50854600	-1.81862200	Н	-4.99878000	1.49125300	0.59234000
Н	-12.96730000	-2.84962300	-1.79800500	Н	-6.05533600	0.09296400	0.69712600
Н	-14.30623900	-4.94926300	-1.49303200	С	-4.02844400	-0.23761600	1.37275600
Н	-13 28977000	-4 61410000	-0.09329100	Н	-8.19680300	1.91929900	5.61426700
Н	-15 55744100	-5 26398600	0 67016900	Н	-8.77355200	1.07023300	4.19406100
н	-16 28550000	-4 02886900	-0.33765600	Н	-7.16363400	-0.36670100	5.40527600
н	-14 39214500	-3 57261200	2 03632000	Н	-5.94600400	0.90715300	5.36027500
н	-16 12349200	-3.22960100	2.03032000	Ο	-3.21258100	-0.07992000	2.27417000
C	-13 35356400	-0.44850900	-0 52825900	Ν	-3.87926400	-1.18395700	0.40655300
ч	-13 38031/00	0.26702500	0.30400400	Н	-4.59302700	-1.24464500	-0.30729700
и П	-13.38031400	0.20792500	1 2/126600	С	-2.74505700	-2.10320100	0.34610000
Γ	-14.11050500	-0.10792300	-1.24120000	С	-1.61560000	-1.58045300	-0.56201600
	-11.9/301400	-0.30934000	-1.1/134400	С	-3.22029300	-3.48283300	-0.12523200
U N	-11.11100200	-1.220/1300	-0.99201900	Н	-2.37116000	-2.17197200	1.37332000
	-11./0314400	0.73743900	-1.93433300	С	-2.05510300	-1.56533900	-2.03026300
П	-12.32070200	1.40330300	-2.014/2800	Н	-0.77677600	-2.28502200	-0.47032900
C	-10.50//5/00	1.01019100	-2.62808800	С	-1.11565900	-0.21395700	-0.10182400
C	-9.55/95/00	1.89/66/00	-1.8021/000	C	-3.64244000	-3.48274300	-1.59855800
U	-10./9499300	1.65411500	-3.99001600	Н	-2.38920700	-4.18866100	0.00348900
Н	-10.03928600	0.03101400	-2.//384100	Н	-4 03885100	-3 82539900	0.51850800
С	-10.114/1200	3.31/9/200	-1.65917400	Ċ	-2 51955900	-2 94931000	-2 49114300
Н	-8.61314500	1.96151900	-2.36053000	н	-2.87381200	-0.83884300	-2.15567700
C	-9.24194700	1.2/136600	-0.44756900	н	-1 22229500	-1 21943100	-2 65189300
C	-11.33644100	3.08169700	-3.85732000	Н	-0.94076100	-0 22093000	0.98266200
Н	-9.85313300	1.68559900	-4.55342900	н	-1 88101300	0.55346100	-0.27895500
Η	-11.48873600	1.01993800	-4.55435700	C II	0.18751300	0.18264000	-0.78224000
С	-10.39155100	3.95184300	-3.02477400	с и	-3 92735500	-1 49692200	-0.78224000
Н	-11.04590400	3.28398500	-1.07129800	и П	-5.92755500	-4.49092200	1 73867700
Η	-9.40223000	3.92920100	-1.09407900	11 11	-4.34238400	-2.80471300	-1./380//00
Н	-9.00122800	0.20666300	-0.57153100	П	-2.84883200	-2.91264700	-3.33383000
Н	-10.12285300	1.30622600	0.20763200	П	-1.00/34900	-5.0424/300	-2.43090000
С	-8.05213700	1.93248500	0.23420400	U	0.93331300	-0.04132400	-1.2/013400
Н	-11.48249900	3.51498900	-4.85317300	IN TT	0.45/80200	1.31626300	-0.//381300
Η	-12.33123100	3.07185000	-3.38561200	Н	-0.21043900	2.13408400	-0.54508500
Н	-10.80978100	4.95720700	-2.90148300	C	1.001/1800	2.09220200	-1.3/226400
				C	2./985/600	2.2/146400	-0.34849100

Н

-9.44002600

-3.56312900

4.06655700

2828500	-2.04418800	Н	10.74239700	-0.34531900	-3.74624700	
5949100	-2.12994300	Н	11.30479900	-1.55570200	-0.21449100	
5740900	0.66821200	Н	10.33642800	-0.18597300	-0.72819000	
9446100	-0.90930600	С	12.33650000	-0.25413800	-1.55029200	
256900	0.33563900	Н	7.80476100	-3.36238700	-4.69012000	
998900	-1.02852000	Н	7.34775400	-2.07697900	-3.59097900	
3778000	-2.63428200	Н	8.93280500	-1.18577700	-5.26740900	
318400	-2.74595800	Н	10.10118400	-2.44760100	-4.88011100	
538500	-0.02182400	0	13.05051600	-0.72828900	-2.42672000	
820900	1.27079000	Ν	12.64812800	0.89599800	-0.89398600	
093900	1.35841500	Н	12.00849400	1.21977800	-0.18067000	
5493500	-0.41278500	С	13.85062100	1.67991600	-1.17149800	
252600	1.00018200	С	15.02019600	1.30877600	-0.23987400	
311100	1.10767600	С	13.53168200	3.17636300	-1.06768000	
196900	-1.55451600	Н	14.12676800	1.43185800	-2.20190800	
261600	-0.48754600	С	14.73156800	1.73835300	1.20240600	
5005900	0.72095200	Н	15.89995600	1.86827200	-0.58787100	
945000	-0.54863800	С	15.36077800	-0.17568000	-0.33114600	
452600	0.82261900	С	13.26391000	3.61881400	0.37508800	
942300	2.10888100	Н	14.39768600	3.73191500	-1.45112600	
986100	2.27143100	Н	12.68075000	3.41407200	-1.71666800	
583300	2.90860000	С	14.42870200	3.23594600	1.29103400	
096800	2.33351500	Н	13.87245400	1.16432800	1.58513900	
210300	4.36072200	Н	15.59161800	1.48747200	1.83278000	
2613900	2.86443300	Н	15.43414800	-0.48344100	-1.38257300	
968800	2.47410600	Н	14.55483400	-0.77902100	0.10797900	
438600	2.92966400	С	16.68586900	-0.50395600	0.34154700	
317900	0.88795000	Н	13.08977900	4.70045400	0.40262500	
687400	4.51095100	Н	12.33899300	3.15643700	0.75270900	
156400	4.96278100	Н	14.20817500	3.52045400	2.32626900	
3965400	4.74155800	Н	15.32358100	3.79856200	0.98991700	
511300	3.92966600	0	17.57961100	0.32012600	0.47933700	
211200	1.85095300	Ν	16.80922700	-1.79596100	0.75836400	
261000	2.08582600	Н	16.05105300	-2.43324600	0.55871700	
3387500	0.79818000	С	18.04131500	-2.32452300	1.30809800	
201600	0.23112300	Н	18.67527800	-1.47652900	1.56959000	
891500	0.39673200	Н	17.83523600	-2.91240500	2.20653400	
013000	5.56838700	Н	18.57135900	-2.95033800	0.58159300	
706300	4 00161100					

С	1.32329600	3.42828500	-2.04418800
Н	1.98336200	1.36949100	-2.12994300
C	2 46135500	3 36740900	0 66821200
н	3 68713400	2 59446100	-0.90930600
C	3 14496700	0.95256900	0.33563900
C	1 00113500	1 52008000	-1.02852000
с u	2 10600700	4.32998900	-1.02832000
11	2.19000700	2 28218400	-2.03428200
П	0.49363000	5.28518400	-2.74595800
C	2.14153000	4.69538500	-0.02182400
Н	1.59586200	3.04820900	1.2/0/9000
Н	3.30328100	3.49093900	1.35841500
Н	3.24496300	0.15493500	-0.41278500
Η	2.32727600	0.64252600	1.00018200
С	4.45422300	1.02311100	1.10767600
Н	0.80931500	5.47196900	-1.55451600
Н	0.07218600	4.29261600	-0.48754600
Н	1.88700000	5.46005900	0.72095200
Н	3 03912600	5 04945000	-0 54863800
0	5 34583900	1 81452600	0.82261900
N	4 57849500	0 10942300	2 10888100
н	3 80346700	-0.51086100	2.10000100
C II	5.00340700	-0.31380100	2.2/143100
C	5.79181700	-0.04383300	2.90800000
C	6./3388000	-1.12096800	2.33351500
C	5.42326300	-0.3/210300	4.360/2200
Н	6.29456200	0.92613900	2.86443300
С	6.12335900	-2.51968800	2.47410600
Н	7.65692000	-1.09438600	2.92966400
С	7.11577700	-0.81317900	0.88795000
С	4.82890500	-1.77687400	4.51095100
Η	6.33944500	-0.31156400	4.96278100
Н	4.73328900	0.38965400	4.74155800
С	5.76950900	-2.83511300	3.92966600
Н	5.21688500	-2.58211200	1.85095300
Н	6.82904400	-3.26261000	2.08582600
н	7 43542300	0 23387500	0 79818000
н	6 24239200	-0.92201600	0.23112300
\hat{C}	8 25011600	-1.68891500	0.39673200
с ц	4.62562600	1 08012000	5 56838700
п	4.02302000	-1.96015000	3.30838700
п	5.85505500	-1.83/06300	4.00161100
H	5.31693500	-3.83035400	4.00594600
Н	6.69396000	-2.85949700	4.52368200
0	9.12590100	-2.11805700	1.14993900
Ν	8.26854500	-1.92693400	-0.94279500
Н	7.52560600	-1.52440100	-1.49871500
С	9.31366900	-2.69503400	-1.61600000
С	10.42888800	-1.79367600	-2.17926600
С	8.69621200	-3.55061000	-2.72848200
Н	9.73973200	-3.34428000	-0.84371500
С	9.91626700	-0.94441700	-3.34746000
Ĥ	11.21505100	-2.45740500	-2.56633900
C	11.05645900	-0.93425600	-1 08539200
č	8 10537300	-2 70566800	_3 90//0/00
с ц	0.19992900	4 22047000	2 00202600
п	7,40903000	-4.2394/800	-3.09323000
Н	/.88811000	-4.10241800	-2.31089200
U	9.31136/00	-1.81351900	-4.45262000
Н	9.15718700	-0.23704200	-2.97673700