**Electronic Supporting Information** 

## Dual Colorimetric Receptor with Logic Gate Operations: Anion Induced Solvatochromism

## Madhuprasad,<sup>a</sup> N. Swathi,<sup>a</sup> J. R. Manjunatha,<sup>b</sup> A. Nityananda Shetty,<sup>a</sup> Uttam Kumar Das,<sup>c</sup> and Darshak R. Trivedi<sup>\*a</sup>

<sup>a</sup> Department of Chemistry, National Institute of Technology Karnataka, Surathkal, 575025, Karnataka, India

<sup>b</sup> PPSFT Department, Central Food Technological Research Institute, Mysore, Karnataka, India

<sup>c</sup> Department of Organic Chemistry, Indian Association for the Cultivation of Science, 2A&2B Raja S. C.

Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India

Tel.: +91-824-2474000 Ext. No:3205 ; Fax: +91-824-2474033, Email: darshak\_rtrivedi@yahoo.co.in

### Contents

| 1 | <sup>1</sup> H NMR spectra            | S2         |
|---|---------------------------------------|------------|
| 2 | <sup>13</sup> C NMR Spectra           | <b>S</b> 4 |
| 2 | Photographs                           | S6         |
| 3 | UV-vis titrations                     | <b>S</b> 8 |
| 4 | UV-vis changes with different anions  | S12        |
| 5 | UV-vis changes with different cations | S13        |
| 6 | Job's plots                           | S14        |
| 7 | Binding constant calculation          | S15        |



**Fig. S2.** <sup>1</sup>H NMR spectra of R2.



**Fig. S3.** <sup>1</sup>H NMR spectra of R3.

# <sup>13</sup>C NMR Spectra



**Fig. S4.**<sup>13</sup>C NMR spectra of R1.



**Fig. S6.**<sup>13</sup>C NMR spectra of R3.



Fig. S7 The ORTEP diagrams (50% probability) of receptor R1 and R3

Table S1 Crystallographic data of receptor R1 and R3

| Parameters       | Receptor R1                    | Receptor R3                    |  |
|------------------|--------------------------------|--------------------------------|--|
| Chemical formula | $C_{13}H_{10}N_2O_3$           | $C_{13}H_{10}N_2O_2$           |  |
| Formula weight   | 242.23                         | 226.23                         |  |
| Crystal System   | Monoclinic                     | Monoclinic                     |  |
| Space group      | P2(1)/c                        | P2(1)/n                        |  |
| a (Å)            | 11.9767(8)                     | 14.6480(2)                     |  |
| b (Å)            | 5.9302(4)                      | 10.8265(2)                     |  |
| c (Å)            | 16.1269(10)                    | 14.7278(2)                     |  |
| <b>S</b> β (°)   | 96.635(2)                      | 101.940 (2)                    |  |
| γ (°)            | 90.00                          | 90.00                          |  |
| $V(Å)^3$         | 1137.73(13)                    | 2285.10 (6)                    |  |
| Z                | 4                              | 8                              |  |
| Crystal size     | $0.47 \times 0.30 \times 0.27$ | $0.47 \times 0.33 \times 0.26$ |  |
| F (000)          | 504                            | 944                            |  |
| R-factor (%)     | 5.23                           | 6.85                           |  |

### **Photographs:**



**Fig. S8.** Change in colour of R1 (5  $\times$  10<sup>-5</sup>M) in dry ACN with the addition of 1 equiv. of tetrabutylammonium anions. (a) Free Receptor R1, (b) F<sup>-</sup>, (c) Cl<sup>-</sup>, (d) Br<sup>-</sup> (e) I<sup>-</sup>, (f) NO<sub>3</sub><sup>-</sup>, (g) HSO<sub>4</sub><sup>-</sup>, (h) H<sub>2</sub>PO<sub>4</sub><sup>-</sup> and (i) AcO<sup>-</sup>.



**Fig. S9.** Change in colour of R2  $(5 \times 10^{-5} \text{M})$  in dry DMSO with the addition of 1 equiv. of tetrabutylammonium anions. (a) Free Receptor R2, (b) F<sup>-</sup>, (c) Cl<sup>-</sup>, (d) Br<sup>-</sup> (e) I<sup>-</sup>, (f) NO<sub>3</sub><sup>-</sup>, (g) HSO<sub>4</sub><sup>-</sup>, (h) H<sub>2</sub>PO<sub>4</sub><sup>-</sup> and (i) AcO<sup>-</sup>.



**Fig. S10.** Change in colour of R2  $(5 \times 10^{-5} \text{M})$  in dry ACN with the addition of 1 equiv. of tetrabutylammonium anions. (a) Free Receptor R2, (b) F<sup>-</sup>, (c) Cl<sup>-</sup>, (d) Br<sup>-</sup> (e) I<sup>-</sup>, (f) NO<sub>3</sub><sup>-</sup>, (g) HSO<sub>4</sub><sup>-</sup>, (h) H<sub>2</sub>PO<sub>4</sub><sup>-</sup> and (i) AcO<sup>-</sup>.



**Fig. S11.** Change in colour of R3  $(5 \times 10^{-5} \text{M})$  in dry DMSO with the addition of 1 equiv. of tetrabutylammonium anions. (a) Free Receptor R3, (b) F<sup>-</sup>, (c) Cl<sup>-</sup>, (d) Br<sup>-</sup> (e) I<sup>-</sup>, (f) NO<sub>3</sub><sup>-</sup>, (g) HSO<sub>4</sub><sup>-</sup>, (h) H<sub>2</sub>PO<sub>4</sub><sup>-</sup> and (i) AcO<sup>-</sup>.



**Fig. S12.** Receptor R3 (5  $\times$  10<sup>-5</sup>M) in dry ACN after the addition of 1 equiv. of tetrabutylammonium anions. (a) Free Receptor R3, (b) F<sup>-</sup>, (c) Cl<sup>-</sup>, (d) Br<sup>-</sup> (e) I<sup>-</sup>, (f) NO<sub>3</sub><sup>-</sup>, (g) HSO<sub>4</sub><sup>-</sup>, (h) H<sub>2</sub>PO<sub>4</sub><sup>-</sup> and (i) AcO<sup>-</sup>.



**Fig. S13.** Change in color after addition of 3 equiv. of different cations (as nitrate salts) to the receptor solution in ACN ( $5 \times 10^{-5}$  M). (a) Receptor R2, (b) Mg<sup>2+</sup>, (c) Ca<sup>2+</sup>, (d) Co<sup>2+</sup>, (e) Ni<sup>2+</sup>, (f) Cu<sup>2+</sup>, (g) Zn<sup>2+</sup>, (h) Cd<sup>2+</sup>, (i) Hg<sup>2+</sup> and (j) Pb<sup>2+</sup>.



**Fig. S14.** Change in color after addition of 3 equiv. of different cations (as nitrate salts) to the receptor solution in ACN ( $5 \times 10^{-5}$  M). (a) Receptor R3, (b) Mg<sup>2+</sup>, (c) Ca<sup>2+</sup>, (d) Co<sup>2+</sup>, (e) Ni<sup>2+</sup>, (f) Cu<sup>2+</sup>, (g) Zn<sup>2+</sup>, (h) Cd<sup>2+</sup>, (i) Hg<sup>2+</sup> and (j) Pb<sup>2+</sup>.



**Fig. S15.** Competitive study of receptor R1 ( $5 \times 10^{-5}$ M) in DMSO by adding 1 equiv. F<sup>-</sup> ion and 1 equiv. of other anions. (a) Receptor R1, (b) R1 + F<sup>-</sup>, (c) R1 + Cl<sup>-</sup> + F<sup>-</sup>, (d) R1 + Br<sup>-</sup> + F<sup>-</sup>, (e) R1 + I<sup>-</sup> + F<sup>-</sup>, (f) R1 + NO<sub>3</sub><sup>-</sup> + F<sup>-</sup>, (g) R1 + HSO<sub>4</sub><sup>-</sup> + F<sup>-</sup> and (h) R1 + H<sub>2</sub>PO<sub>4</sub><sup>-</sup> + F<sup>-</sup>.



**Fig. S16** Competitive study of receptor R1 (5×10<sup>-5</sup>M) in ACN by adding 3 equiv.  $Cu^{2+}$  ion and 3 equiv. of other cations. (a) Receptor R1, (b) R1 + Mg<sup>2+</sup> + Cu<sup>2+</sup>, (c) R1 + Ca<sup>2+</sup> + Cu<sup>2+</sup>, (d) R1 + Co<sup>2+</sup> +

 $Cu^{2+}$ , (e) R1 + Ni<sup>2+</sup> + Cu<sup>2+</sup>, (f) R1 + Cu<sup>2+</sup>, (g) R1 + Zn<sup>2+</sup> + Cu<sup>2+</sup>, (h) R1 + Cd<sup>2+</sup> + Cu<sup>2+</sup>, (i) R1 + Hg<sup>2+</sup> + Cu<sup>2+</sup> and (j) R1 + Pb<sup>2+</sup> + Cu<sup>2+</sup>



**Fig. S17:** Solvatochromic effect of the receptor R2 upon addition of 1 equiv. of  $F^-$  ions in different solvents. Top row: R2 solution (5 × 10<sup>-5</sup>M) in different solvents. Bottom row: R2+F<sup>-</sup> ions; (a) 1,4-Dioxane, (b) THF, (c) DCM, (d) Acetone, (e) ACN and (f) DMSO.

**UV-vis titrations:** 



**Fig. S18:** UV-vis titration spectra of R1 ( $5 \times 10^{-5}$ M) with the increasing concentration of TBAOH (0–25 equiv.) in dry DMSO.



**Fig. S19:** UV-vis titration spectra of R2  $(5 \times 10^{-5} \text{M})$  with the increasing concentration of TBAF (0–25 equiv.) in dry DMSO.



**Fig. S20:** UV-vis titration spectra of R2  $(5 \times 10^{-5} \text{M})$  with the increasing concentration of TBAF (0–10 equiv.) in dry ACN.



Fig. S21: UV-vis spectra of R3 (5  $\times$  10<sup>-5</sup>M) with the addition TBAF (20 equiv.) in dry DMSO.



Fig. S22: UV-vis spectra of R3 ( $5 \times 10^{-5}$ M) with the addition TBAF (20 equiv.) in dry ACN.



**Fig. S23:** UV-vis titration spectra of R2 ( $5 \times 10^{-5}$ M) with the increasing concentration of Cu<sup>2+</sup> ions (0–4 equiv.) in ACN.

The receptor did not show any new peak even after addition of 20 equiv. of  $Cu^{2+}$  solution. However, the peak corresponding to –OH disappeared in UV-vis spectra as shown in Fig. S23 (showed addition of  $Cu^{2+}$  ions only upto 4 equiv. for clarity).



**Fig. S24:** UV-vis titration spectra of R3 ( $5 \times 10^{-5}$ M) with 20 equiv. of Cu<sup>2+</sup> ions in ACN.

#### UV-Vis changes with different anions:



**Fig. S25:** UV–Vis changes of R1 in DMSO (5  $\times$  10<sup>-5</sup>M) after addition of 20 equiv. of (a) F<sup>-</sup> ion, (b) AcO<sup>-</sup> ion and (c) Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, HSO<sub>4</sub><sup>-</sup> and H<sub>2</sub>PO<sub>4</sub><sup>-</sup> ions in the form of TBA salts.



**Fig. S26:** UV–Vis changes of R2 in DMSO (5  $\times$  10<sup>-5</sup>M) after addition of 20 equiv. of (a) F<sup>-</sup> ion, (b) AcO<sup>-</sup> ion and (c) Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, HSO<sub>4</sub><sup>-</sup> and H<sub>2</sub>PO<sub>4</sub><sup>-</sup> ions in the form of TBA salts.





**Fig. S27:** UV–Vis changes of R1 in ACN ( $10 \times 10^{-5}$ M) after addition of 40 equiv. of metal nitrates (a) Free receptor R1 (b) R1+ Cu<sup>2+</sup> and (c) R1+ other metal salts (Mg<sup>2+</sup>, Ca<sup>2+</sup>, Co<sup>2+</sup>, Cd<sup>2+</sup>, Hg<sup>2+</sup>). Ni<sup>2+</sup> and Pb<sup>2+</sup> are omitted for clarity.



**Fig. S28:** UV–Vis changes of R2 in ACN ( $10 \times 10^{-5}$ M) after addition of 40 equiv. of metal nitrates (a) Free receptor R2 (b) R2+ Cu<sup>2+</sup> and (c) R2+ other metal salts (Mg<sup>2+</sup>, Ca<sup>2+</sup>, Co<sup>2+</sup>, Zn<sup>2+</sup>, Cd<sup>2+</sup>, Hg<sup>2+</sup>). Ni<sup>2+</sup>, Zn<sup>2+</sup> and Pb<sup>2+</sup> are omitted for clarity.





**Fig. S29:** Jobs plot for R2 with  $F^-$  ion at 500 nm in dry ACN.



**Fig. S30:** Jobs plot for R2 with  $F^-$  ion at 558 nm in dry DMSO.

#### **Binding constant:**

Binding constant was calculated using equation (1).

Where,  $A_0$ , A,  $A_{max}$  are the absorption considered in the absence of F<sup>-</sup>, at an intermediate, and at a concentration of saturation. K is binding constant,  $[F^-]$  is concentration of F<sup>-</sup> ion and n is the stoichiometric ratio.