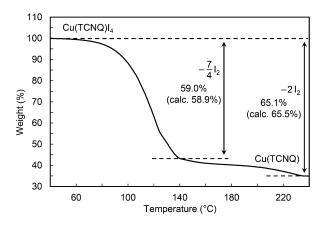
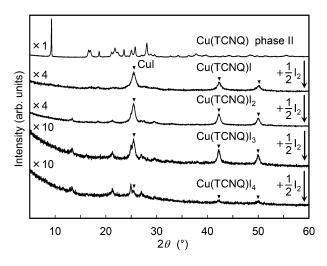
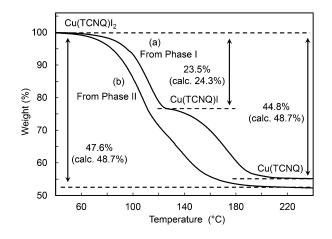

Supporting Information

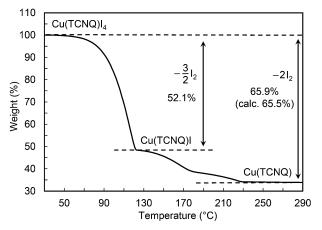
Reversible iodine absorption of nonporous coordination polymer Cu(TCNQ)

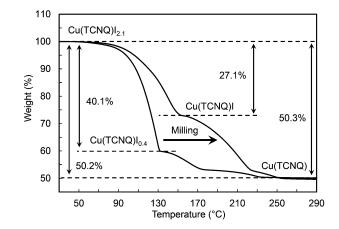

Koji Miyao,^a Akira Funabiki,^a Kazuyuki Takahashi,^a Tomoyuki Mochida,^{*a} Mikio Uruichi^b

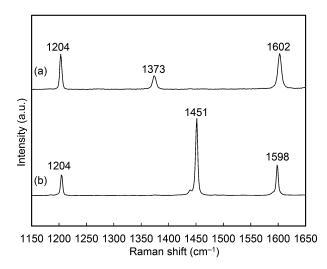
^aDepartment of Chemistry, Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan. E-mail: tmochida@platinum.kobe-u.ac.jp


^bInstitute for Molecular Science, Okazaki, Aichi 444-8585, Japan


Fig. S1 Powder XRD patterns of (a) phase I and (b) phase II Cu(TCNQ) in the repeated absorption–desorption experiments. Triangles indicate peaks for CuI.


Fig. S2 Thermogravimetric traces of $Cu(TCNQ)I_4$ prepared by solid-state reactions of phase II Cu(TCNQ).


Fig. S3 Powder XRD patterns of Cu(TCNQ)I_n (n = 1, 2, 3, and 4) obtained from stepwise solid-state reactions of phase II Cu(TCNQ). Triangles indicate peaks for CuI.


Fig. S4 Thermogravimetric traces of $Cu(TCNQ)I_n$ (n = 2) formed by solid-state reactions of phase I Cu(TCNQ) and phase II Cu(TCNQ).

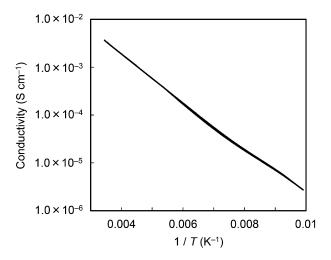

Fig. S5 Thermogravimetric trace of $Cu(TCNQ)I_4$ prepared by liquid-phase reaction of phase I Cu(TCNQ).

Fig. S6 Thermogravimetric trace of Cu(TCNQ)I_n (n = 2.1) obtained from liquid-phase reaction of phase I Cu(TCNQ). TG trace after grinding phase II Cu(TCNQ) sample (n = 2.1) is also shown.

Fig. S7 Raman spectra of (a) phase I Cu(TCNQ) and (b) Cu(TCNQ) I_4 prepared by liquid-phase reaction of phase I.

Fig. S8 Temperature dependence of electrical conductivity of compaction pellet of $Cu(TCNQ)I_n$ (*n* = 3.7) prepared from phase I Cu(TCNQ) using liquid-phase reaction.