Supporting Information

Important Reaction Parameters in the Synthesis of Phenylphosphonic Acid Functionalized Titania Particles by Reactive Milling

Annika Betke, Guido Kickelbick

Saarland University, Inorganic Chemistry, Am Markt Zeile 3, 66125 Saarbrücken, Germany. E-Mail: guido.kickelbick@uni-saarland.de

S 1: FTIR-spectra: starting material titania, coupling agent phenylphosphonic acid and samples after the milling process: 200 rpm / 12 h, 200 rpm / 24 h, 200 rpm / 36 h, 200 rpm / 48 h; surface modification has taken place after the milling process, which is indicated by the characteristic bands for aromatic C-C oscillation (1600 cm⁻¹), the C-H oscillation (1440 cm⁻¹), P-phenyl vibrations (1150 cm⁻¹), the wide band at 1000 cm⁻¹ (P-O region) and the aromatic C-H oscillation at 3050 cm⁻¹.

S 2: FTIR-spectra: starting material titania, coupling agent phenylphosphonic acid and samples after the milling process: 250 rpm / 12 h, 250 rpm / 24 h, 250 rpm / 36 h, 250 rpm / 48 h; surface modification has taken place after the milling process, which is indicated by the characteristic bands for aromatic C-C oscillation (1600 cm⁻¹), the C-H oscillation (1440 cm⁻¹), P-phenyl vibrations (1150 cm⁻¹), the wide band at 1000 cm⁻¹ (P-O region) and the aromatic C-H oscillation at 3050 cm⁻¹.

S 3: XRD patterns of the starting material anatase and the samples after milling with phenylphosphonic acid at 200 rpm with different durations. After the milling the presence of high pressure TiO₂ ($2\theta = 31^{\circ}$, 42° and 66°) and rutile ($2\theta = 27^{\circ}$) is indicated by additional reflections.

S 4: XRD patterns of the starting material anatase and the samples after milling with phenylphosphonic acid at 250 rpm with different durations. After the milling the presence of high pressure TiO₂ ($2\theta = 31^\circ$, 42° and 66°) and rutile ($2\theta = 27^\circ$) is indicated by additional reflections.

S 5: XRD patterns of the starting material anatase and the samples after milling without any additive at 200 rpm with different durations. After the milling the presence of high pressure TiO₂ ($2\theta = 31^{\circ}$, 42° and 66°) and rutile ($2\theta = 27^{\circ}$) is indicated by additional reflections.

S 6: XRD patterns of the starting material anatase and the samples after milling without any additive at 250 rpm with different durations. After the milling the presence of high pressure TiO₂ ($2\theta = 31^\circ$, 42° and 66°) and rutile ($2\theta = 27^\circ$) is indicated by additional reflections.

S 7: XRD patterns of the starting material anatase and the samples after milling without any additive at 300 rpm with different durations. After the milling the presence of high pressure TiO₂ ($2\theta = 31^{\circ}$, 42° and 66°) and rutile ($2\theta = 27^{\circ}$) is indicated by additional reflections.

Table S 1: Composition of titania milled with phenylphosphonic acid as coupling agent at specific process parameters

Process parameters	anatase / wt%	rutile / wt%	high pressure / wt%
starting material	98.2 ± 0.1	1.8 ± 0.1	0
200 rpm / 12 h	69.1 ± 0.2	2.9 ± 0.1	28.0 ± 0.2

200 rpm / 24 h	64.4 ± 0.3	2.3 ± 0.2	33.3 ± 0.3
200 rpm / 36 h	42.5 ± 0.3	3.8 ± 0.2	53.7 ± 0.3
200 rpm / 48 h	62.4 ± 0.2	3.0 ± 0.1	34.6 ± 0.2
250 rpm / 12 h	71.9 ± 0.2	2.6 ± 0.1	25.5 ± 0.2
250 rpm / 24 h	36.7 ± 0.3	4.1 ± 0.2	59.2 ± 0.3
250 rpm / 36 h	36.9 ± 0.2	3.9 ± 0.1	59.2 ± 0.2
250 rpm / 48 h	41.2 ± 0.3	4.3 ± 0.2	54.2 ± 0.4
300 rpm / 12 h	41.3 ± 0.2	4.3 ± 0.2	54.4 ± 0.2
300 rpm / 24 h	18.3 ± 0.2	4.1 ± 0.1	77.6 ± 0.2
300 rpm / 36 h	13.4 ± 0.2	6.0 ± 0.2	80.6 ± 0.3
300 rpm / 48 h	18.3 ± 0.2	4.1 ± 0.1	77.6 ± 0.2

Table S 2: Composition of titania milled without any coupling agent at specific process parameters

Process parameters	anatase / wt%	rutile / wt%	high pressure / wt%
starting material	98.2 ± 0.1	1.8 ± 0.1	0
200 rpm / 12 h	78.1 ± 0.3	2.4 ± 0.1	19.5 ± 0.3
200 rpm / 24 h	51.9 ± 0.6	2.0 ± 0.1	46.1 ± 0.6
200 rpm / 36 h	50.1 ± 0.4	3.1 ± 0.1	46.8 ± 0.4
200 rpm / 48 h	37.1 ± 0.4	3.8 ± 0.2	59.1 ± 0.4
250 rpm / 12 h	40.7 ± 0.4	3.3 ± 0.2	56.0 ± 0.4
250 rpm / 24 h	23.0 ± 0.3	11.0 ± 0.3	66.0 ± 0.4
250 rpm / 36 h	12.4 ± 0.2	18.0 ± 0.5	69.6 ± 0.5
250 rpm / 48 h	6.1 ± 0.1	26.6 ± 0.5	67.3 ± 0.5
300 rpm / 12 h	23.6 ± 0.2	14.5 ± 0.4	61.9 ± 0.4
300 rpm / 24 h	14.6 ± 0.3	19.0 ± 0.6	66.4 ± 0.6
300 rpm / 36 h	6.4 ± 0.1	36.1 ± 0.5	57.5 ± 0.5
300 rpm / 48 h	2.4 ± 0.1	38.0 ± 0.6	59.6 ± 0.6

S 8: Titania milled with phenylphonphonic acid for 12 h at 300 rpm, ¹³C solid state NMR (left) and ³¹P solid state NMR (right)

S 9: Titania milled with phenylphonphonic acid for 48 h at 200 rpm, ¹³C solid state NMR (left) and ³¹P solid state NMR (right)

S 10: Titania milled with phenylphonphonic acid for 48 h at 300 rpm, ¹³C solid state NMR (left) and ³¹P solid state NMR (right)

S 11: ESR spectra of the starting material TiO_2 and samples after the milling process. Titania milled with phenylphosphonic acid in a WC/Co-hard metal grinding bowl (AF021) and in a zirconia grinding bowl (AF026), titania milled with dodecylphosphonic acid in a zirconia grinding bowl (AF038), titanina milled without any additive in a WC/Co-hard metal grinding bowl (AF050) and in a zirconia grinding bowl (AF040).