Supplementary data:

Acridine-based enantioselective fluorescent sensors

for malate anion in water

Kuo-Xi Xu, ^a Hua-Jie Kong, ^a Ping Li, ^a Li Yang, ^a Jing-Lai Zhang, ^a and Chao-Jie Wang ^b		
Table of contents:		
1. Copies of HRMS, ¹ H and ¹³ C NMR spectra of sensors S-/R-1, S-2 and S-3 .	2-4	
2. Binding experiments	5-11	
3. Computational details	11-13	

HRMS of compound S-2.

¹ H and ¹³C NMR spectra of sensor **S-2**.

2. Binding experiments.

The sensor S-1:

Fig. s1 Fluorescence spectra of sensor S-1 ($3.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$) upon addition of various amounts of *D*- or *L*-methoxyphenylacetic acid anion in H₂O (including 0.3%DMSO, 0.01 M HEPES buffer, pH 7.4). The equivalents of anion are: $0 \rightarrow 97$. $\lambda_{\text{ex}} = 356$ nm.

Fig. s2 Fluorescence spectra of sensor **S-1** (3.0×10^{-5} M) with *D*- or *L*-phenylalanine acid anion in buffered H₂O (including 0.3%DMSO, 0.01 M HEPES buffer, pH=7.4). Equivalents of anion: $0\rightarrow 97$. $\lambda_{ex}=356$ nm (EX: 10; EM: 10).

The sensor S-2:

Fig. s3 (A): Fluorescence spectra of sensor **S-2** (3.0×10^{-5} M) with *D*-MA in buffered H₂O (including 0.3%DMSO, 0.01 M HEPES buffer, pH=7.4). Equivalents of anion: $0 \rightarrow 104$. $\lambda_{ex}=371$ nm (EX: 10; EM: 10). (B): changes in the fluorescence intensity of **S-2** at 438 nm upon addition of *D*-MA. The line shown is a line-fitted curve. The correlation coefficient (R) of the non-linear curve fitting is 0.9972.

Fig. s4 (A): Fluorescence spectra of sensor **S-2** (3.0×10^{-5} M) with *L*-MA in buffered H₂O (including 0.3%DMSO, 0.01 M HEPES buffer, pH=7.4). Equivalents of anion: $0 \rightarrow 104$. $\lambda_{ex}=371$ nm (EX: 10; EM: 10). (B): changes in the fluorescence intensity of **S-2** at 438 nm upon addition of *L*-MA. The line shown is a line-fitted curve. The correlation coefficient (R) of the non-linear curve fitting is 0.9983.

The sensor S-3:

Fig. s5 (A): Fluorescence spectra of sensor **S-3** (3.0×10^{-5} M) with *D*-MA in buffered H₂O (including 0.3%DMSO, 0.01 M HEPES buffer, pH=7.4). Equivalents of anion: $0 \rightarrow 198$. $\lambda_{ex}=376$ nm (EX: 10; EM: 10). (B): changes in the fluorescence intensity of **S-3** at 438 nm upon addition of *D*-MA. The line shown is a line-fitted curve. The correlation coefficient (R) of the non-linear curve fitting is 0.9908.

Fig. s6 (A): Fluorescence spectra of sensor **S-3** (3.0×10^{-5} M) with *L*-MA in buffered H₂O (including 0.3%DMSO, 0.01 M HEPES buffer, pH=7.4). Equivalents of anion: $0 \rightarrow 198$. $\lambda_{ex}=376$ nm (EX: 10; EM: 10). (B): changes in the fluorescence intensity of **S-3** at 438 nm upon addition of *L*-MA. The line shown is a line-fitted curve. The correlation coefficient (R) of the non-linear curve fitting is 0.9978.

Fig. s7 (A): Fluorescence spectra of sensor **R-1** (3.0×10^{-5} M) with *L*-MA in buffered H₂O. Equivalents of anion: $0 \rightarrow 97$. $\lambda_{ex}=356$ nm (EX: 5; EM: 10). (B): changes in the fluorescence intensity of **R-1** at 450 nm upon addition of *L*-MA. The line shown is a line-fitted curve. The correlation coefficient (**R**) of the non-linear curve fitting is 0.9989.

Fig. s8 (A): Fluorescence spectra of sensor **R-1** (3.0×10^{-5} M) with *D*-MA in buffered H₂O. Equivalents of anion: $0 \rightarrow 97$. $\lambda_{ex}=356$ nm (EX: 5; EM: 10). (B): changes in the fluorescence intensity of **R-1** at 450 nm upon addition of *D*-MA. The line shown is a line-fitted curve. The correlation coefficient (R) of the non-linear curve fitting is 0.9974.

Computational Details

The gaussion 03 series of programs used for all calculaions, ¹ molecules were also fully structurally optimized at the B3LYP/6-31G(d, p) level of theory, the complex single point energy corrected by using the basis set superposition error(BSSE) at the B3LYP/6-31G(d, p) level of theory.

Fig. s9 (A) The mode of proposed 1:1 complexation of sensor S-1+D-MA; (B) The modes of proposed 1:1 complexation of sensor S-1+L-MA.

Table S1. Optimized Cartesian coordinates (Å) and energies (Hartree) of complex corrected by using the basis set superposition error(BSSE) at the B3LYP/6-31G(d, p) level of theory.

bond	Modle A	Modle B
	length (Å)	length (Å)
1C-2C	1.37584	1.37337

1C-6C	1.42175	1.42479
1C-14H	1.08603	1.08606
2C-3C	1.44411	1.4432
2C-22C	1.5248	1.51963
3C-4C	1.44902	1.4458
3C-21N	1.34314	1.34254
4C-5C	1.42608	1.42792
4C-7C	1.39762	1.39779
5C-6C	1.37066	1.37049
5C-15H	1.08925	1.089
6C-16H	1.08894	1.08874
7C-8C	1.39637	1.39826
7C-17H	1.09074	1.09057
8C-9C	1.44929	1.4476
8C-13C	1.42729	1.42722
9C-10C	1.44787	1.44572
9C-21N	1.3413	1.34145
10C-11C	1.37576	1.37471
10C-40C	1.52051	1.52174
11C-12C	1.42346	1.42429
11C-18H	1.08521	1.08514
12C-13C	1.36949	1.36982
12C-19H	1.08922	1.0888
13C-20H	1.0892	1.08899
22C-23H	1.09382	1.095
22C-24H	1.10168	1.10177
22C-25N	1.46464	1.45279
25N-26H	1.03234	1.04026
25N-27C	1.45003	2.66767
27C-29C	1.54101	1.54074
27C-28H	1.10178	1.10117
27C-33C	1.54295	1.54767
29C-30H	1.09826	1.09551
29C-31H	1.09616	1.09555
29C-32H	1.09624	1.09521
33C-34O	1.22218	1.22131
33C-350	1.33338	1.333
350-36C	1.43993	1.44001
36C-37H	1.09398	1.09451
36C-38H	1.09579	1.09461
36C-39H	1.09498	1.09566
40C-41H	1.09969	1.09906
40C-42H	1.09858	1.09497
40C-43N	1.46664	1.46537

43N-44H	1.0312	1.02863
43N-45C	1.46132	1.46837
45C-46H	1.0978	1.09724
45C-47C	1.54131	1.54024
45C-54C	1.53823	1.53648
47C-48O	1.21809	1.21695
47C-49O	1.34109	1.34132
49O-50C	1.44313	1.44577
50C-51H	1.09431	1.09423
50C-52H	1.09266	1.09306
50C-53H	1.098	1.10141
54C-55H	1.09702	1.09708
54C-56H	1.09462	1.09443
54C-57H	1.09455	1.09394

E: Single point energy corrected by using the basis set superposition error (BSSE) at the B3LYP/6-31G(d, p) level of theory.

E1: the energy change of 1+D-MA is -204.1389262

E2: the energy change of 1+L-MA is -198.3504863

(1) Complete Ref. 1 of paper: Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.