Electronic Supplementary Information

PEDOT Nanostructures Synthesized in Hexagonal Mesophases

Srabanti Ghosh^a, Hynd Remita^a, Laurence Ramos^{b,c}, Alexandre Dazzi^a,

Ariane Deniset-Besseau^a, Patricia Beaunier^d, Fabrice Goubard^e, Pierre-Henri Aubert^e,

Francois Brisset^f and Samy Remita^{a, g} *

^aLaboratoire de Chimie Physique, UMR 8000-CNRS, Bât. 349, Université Paris-Sud, 91405 Orsay, France

^bUniversité Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095, Montpellier, France

^c CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095, Montpellier, France

^dLaboratoire de Réactivité de Surface, UMR 7197-CNRS, UPMC, Université Paris 6, 75006 Paris, France

^eLaboratoire de Physicochimie des Polymères et Interfaces (LPPI), Université de Cergy-Pontoise, 95031 Cergy-Pontoise Cedex, France

^fICMMO, UMR 8182-CNRS, Bât.410-420, Université Paris-Sud, 91405 Orsay, France

^gDépartement CASER, Ecole SITI, Conservatoire National des Arts et Métiers, CNAM, 292 rue Saint-

Martin, 75141 Paris Cedex 03, France

*corresponding author, e-mail: samy.remita@u-psud.fr

List of contents:

Figure S1- Photographs of (*a*) hexagonal mesophases in the presence of 0.1 M EDOT and in the absence of $FeCl_3$ (*b*) mesophases doped with chemical oxidant $FeCl_3$ at 0.1 M in the absence of EDOT and (*c*) hexagonal liquid crystals prepared in the presence of both EDOT and FeCl₃. The color change indicates the oxidation of EDOT monomers by $FeCl_3$.

Figure S2- Absorption spectrum of ethanolic solution containing 0.1 M in FeCl₃ used as chemical oxidant for the oxidation of EDOT monomers. The optical path length was 0.1 cm. The reference was ethanol.

Figure S3- Cryo-TEM images of hexagonal mesophases in the absence (*a*) or in the presence (*b*) of both 0.1 M EDOT and 0.1 M FeCl₃.

Figure S4- Optical images of PEDOT polymers deposited on ZnSe prism after extraction from hexagonal mesophases. For PEDOT synthesis, 0.1 M in EDOT and 0.1 M in FeCl₃ were used at 0.1 M in NaCl (a) or 0.3 M in NaCl (b).

Figure S5- *TEM image of PEDOT polymers synthesized in bulk solution (without using the swollen hexagonal mesophases). 0.1 M in EDOT and 0.1 M in FeCl*₃ were used for PEDOT preparation.

Figure S6- *TEM image of PEDOT polymers first synthesized in bulk solution using 0.1 M in EDOT and 0.1 M in FeCl*₃, then incorporated in mesophases and finally extracted from these latter thanks to our optimized extraction procedure.

Figure S1- Photographs of (*a*) hexagonal mesophases in the presence of 0.1 M EDOT and in the absence of $FeCl_3$ (*b*) mesophases doped with chemical oxidant $FeCl_3$ at 0.1 M in the absence of EDOT and (*c*) hexagonal liquid crystals prepared in the presence of both EDOT and $FeCl_3$. The color change indicates the oxidation of EDOT monomers by $FeCl_3$.

Figure S2

Figure S2- Absorption spectrum of ethanolic solution containing 0.1 M in FeCl₃ used as chemical oxidant for the oxidation of EDOT monomers. The optical path length was 0.1 cm. The reference was ethanol.

Figure S3- *Cryo-TEM images of hexagonal mesophases in the absence* (*a*) *and in the presence* (*b*) *of both 0.1 M EDOT and 0.1 M FeCl*₃.

Figure S4- Optical images of PEDOT polymers deposited on ZnSe prism after extraction from hexagonal mesophases. For PEDOT synthesis, 0.1 M in EDOT and 0.1 M in FeCl₃ were used at 0.1 M in NaCl (a) or 0.3 M in NaCl (b).

Figure S5- *TEM image of PEDOT polymers synthesized in bulk solution (without using the swollen hexagonal mesophases). 0.1 M in EDOT and 0.1 M in FeCl*₃ were used for PEDOT preparation.

Figure S6- *TEM image of PEDOT polymers first synthesized in bulk solution using 0.1 M in EDOT and 0.1 M in FeCl₃, then incorporated in mesophases and finally extracted from these latter thanks to our optimized extraction procedure.*