Supporting Information for "Synthesis of a Novel Hybrid Metal Organic Salt and its Solid-State Transformation."

Javier Martí-Rujas,* Massimo Cametti.

Contents

1. Experimental

Fig. S1. ORTEP view of the crystal structure of $\mathbf{1}$ after manually removing the water molecule in order to show the void space left (i.e., pocket). Using a $1.2 \AA$ probe radius, grid spacing of $0.5 \AA$ and considering the contact surface area the void volume corresponds to 1.9% of the total unit cell volume.

Table. S1 List of all the symmetry operators observed in $\mathbf{1}$.

2. Single crystal X-ray structure of 2.

Fig. S2. (a) Crystal structure of salt 2 viewed along the b-axis; (b) detailed view of the dication showing the trifurcated weak intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (only one is showed); (c) view of two $\left[\mathrm{ZnI}_{4}\right]^{2-}$ dianions surrounded by $\mathrm{K} 222-\mathrm{H}_{2}{ }^{2+}$ dications. (d) $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ interactions observed in 2. Color code: Carbon: green; Nitrogen: blue; Oxygen: red; Nitrogen: grey; Hydrogen: light grey. Weak hydrogen bonding shown as dashed lines.

3. Single crystal X-ray structure of 3.

Table. S2 Relevant distances in molecular salts 1-4.

Fig. S3. Ball and stick model viewed along the a-axis of isostructural crystal structures 2, 3 and 4 (a), (b) and (c) respectively.

Fig. S4. Simulated PXRD pattern of 2 and experimental PXRD pattern of a sample obtained
after grinding K 222 and $\mathrm{ZnI}_{2}(1: 2$ molar ratio $)$ in the presence of a drop of methanol.

Fig. S5. Experimental vs simulated from single crystal PXRD patterns of $\mathbf{3}$ measured at rt . The experimental pattern of the $\mathrm{ZnBr}_{4}{ }^{2-}$ was crystallized from methanol. Clearly, both diffraction patterns show the same crystalline structure.

Fig. S6. Experimental PXRD of obtained after crystallization of K 222 and $\mathrm{ZnI}_{2}(1: 2)$ in ethanol and simulated of 2 crystallized from methanol. Clearly, both diffraction patterns show the same crystalline structure.

Fig. S7. Experimental PXRD corresponding to the solid obtained when ZnI_{2} was added into a solution of $\mathrm{K} 222(\mathrm{MeOH})$ warmed at $45^{\circ} \mathrm{C}$. The diffraction pattern corresponds to that of $\mathbf{2}$.

Fig. S8. Experimental PXRD corresponding to the solid obtained when ZnBr_{2} was added into a solution of $\mathrm{K} 222(\mathrm{MeOH})$ cooled at $0^{\circ} \mathrm{C}$ using ice bath. The diffraction pattern corresponds to that of $\mathbf{3}$.

Fig. S9. Experimental PXRD corresponding to the solid obtained when ZnCl_{2} was added into a solution of $\mathrm{K} 222(\mathrm{MeOH})$ cooled at $0^{\circ} \mathrm{C}$ using ice bath. The diffraction pattern corresponds to that of 4.

Fig. S10. Figure showing the μ-O-based and μ-S clusters based on ab initio calculations on the adamantanoid dianion of formula $\left[\mathrm{Zn}_{4}(\mathrm{MeO})_{6} \mathrm{I}_{4}\right]^{2-}$ and $\left[\mathrm{Zn}_{4}(\mathrm{MeS})_{6} \mathrm{I}_{4}\right]^{2-}$ at the HF-3-21G level. The volumes and distances between opposite μ-O(S) atoms $382.5 \AA 3-4.32 \AA$ and $446.5 \AA 3-5.44 \AA$ for the μ-O and μ-S clusters, respectively). An additional carbon on the alkoxide chain would probably lead to significant sterical clash with the apical I atoms.

Fig. S11. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of a 2.5 mM solution of $\mathbf{1}$ in DMSO-d6:acetone-d6 2:1 mixture at $25^{\circ} \mathrm{C}$.

Fig. S12. Portion of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of a 2.5 mM solution of 1 in DMSO-d6:acetoned6 2:1 mixture at $25^{\circ} \mathrm{C}$. Two groups of signals (labeled \bullet and \bullet) can be identified (at ppm δ $=3.60 \mathrm{~s}, 3.54 \mathrm{t}$ and $2.58 \mathrm{t} ; \delta=3.79 \mathrm{t}, 3.78 \mathrm{t}$ and 3.69 s$)$ and they can be assigned to the cationic K222- $\mathrm{H}_{2}{ }^{2+}$ of $\mathbf{1}$ in both its associated ion-pair and its solvated forms.

Fig. S13. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of a 2.5 mM solution of $\mathbf{2}$ in DMSO-d6:acetone-d6 2:1 mixture at $25^{\circ} \mathrm{C}$ and magnification of the $4.0-3.6 \mathrm{ppm}$ region.

Fig. S14. Spectral comparison between an equimolar solution of $\mathbf{1}$ (top) and 2 (bottom) in DMSO-d6:acetone-d6 2:1 mixture at $25^{\circ} \mathrm{C}$. Shift of the $\mathrm{K} 222-\mathrm{H}_{2}{ }^{2+}$ signals are highlighted by the black arrows.

1. Experimental

1.2 X-ray Diffraction Data

Single crystal X-ray diffraction data for $\mathbf{1 , 2}$ and $\mathbf{3}$ were recorded with a Bruker X8 Prospector APEX-II/CCD diffractometer equipped with an Incoatec $\mathrm{I} \mu \mathrm{S}_{\mathrm{Cu}}$ microphocus X-ray source $\left(\mathrm{CuK}_{\alpha}\right.$ radiation, $\lambda=1.54056 \AA$) and with a CCD detector. The low temperature experiments were collected using a Bruker Oxford Cryosystem device. SHELXL ${ }^{1}$ was used for structure solution and refinement. X-ray powder diffraction experiments were recorded on a Bruker D2 Phaser diffractometer $(\lambda=1.54056 \AA)$. The 2θ scan range was $4.7^{\circ}-40^{\circ}$ with a step size 0.02°. The exposure time was 2s. Simulated PXRD patterns were generated using Mercury Version 3.1 software program. Figures depicting the crystal packing were created using PyMol software.

Fig. S1. ORTEP view of the crystal structure of $\mathbf{1}$ after manually removing the water molecule in order to show the void space left (i.e., pocket). Using a $1.2 \AA$ probe radius, grid spacing of $0.5 \AA$ and considering the contact surface area the void volume corresponds to 1.9% of the total unit cell volume.

Table. S1 List of all the symmetry operators observed in $\mathbf{1}$.

Numb er	Symm. Op.	Description	Detailed Description	Ord er	$\begin{aligned} & \text { Typ } \\ & \mathbf{e}^{2} \end{aligned}$
1	x,y,z	Identity	Identity	1	1
2	z,x,y	Rotation axis (3fold)	3-fold rotation axis with direction [1, 1, 1] at $\mathrm{x}, \mathrm{x}, \mathrm{x}$	3	3
3	y,z,x	Rotation axis (3fold)	3-fold rotation axis with direction [1, 1, 1] at $\mathrm{x}, \mathrm{x}, \mathrm{x}$	3	3
4	$1 / 2-y,-$	Screw axis (3fold)	3 -fold screw axis with direction $[1,-1,1]$ at $x+5 / 6,-x+1 / 3$, x with screw		
4	$\begin{aligned} & \mathrm{z}, 1 / 2+\mathrm{x} \\ & 1 / 2+\mathrm{z}, 1 / 2- \end{aligned}$		component $[1 / 3,-1 / 3,1 / 3]$	3	3
5	x,-y -	fold)	3 -fold rotation axis with direction $[1,-1,1]$ at $\mathrm{x}+1 / 2,-\mathrm{x}, \mathrm{x}$	3	3
6	$\begin{aligned} & y, 1 / 2+z, 1 / 2 \\ & -x \end{aligned}$	Screw axis (3fold)	3 -fold screw axis with direction $[1,-1,-1]$ at $x+1 / 6,-x+1 / 6,-x$ with screw component $[-1 / 3,1 / 3,1 / 3]$	3	3
7	$\begin{aligned} & 1 / 2-z,- \\ & x, 1 / 2+y \end{aligned}$	Rotation axis (3fold)	3-fold rotation axis with direction $[1,-1,-1]$ at $x+1 / 2,-x+1 / 2,-x$	3	3
8	$\begin{aligned} & \mathrm{z}, 1 / 2+\mathrm{x}, 1 / 2 \\ & -\mathrm{y} \end{aligned}$	Rotation axis (3fold)	3 -fold rotation axis with direction [1, 1, -1] at $\mathrm{x}, \mathrm{x}+1 / 2,-\mathrm{x}$	3	3
9	$\begin{aligned} & 1 / 2+y, 1 / 2- \\ & z,-x \end{aligned}$	Screw axis (3fold)	3 -fold screw axis with direction $[1,1,-1]$ at $x+1 / 3, x+1 / 6,-x$ with screw component [$1 / 3,1 / 3,-1 / 3$]	3	3
10	$\begin{aligned} & 1 / 2+x, 1 / 2- \\ & y,-z \end{aligned}$	Screw axis (2fold)	2 -fold screw axis with direction $[1,0,0]$ at $\mathrm{x}, 1 / 4,0$ with screw component $[1 / 2$, $0,0]$	2	2
11	$\begin{aligned} & x, 1 / 2+y, 1 / 2 \\ & -z \end{aligned}$	Screw axis (2fold)	2 -fold screw axis with direction $[0,1,0]$ at $0, y, 1 / 4$ with screw component $[0$, $1 / 2,0]$	2	2
12	$\begin{aligned} & 1 / 2-\mathrm{x},- \\ & \mathrm{y}, 1 / 2+\mathrm{z} \end{aligned}$	Screw axis (2- fold)	2-fold screw axis with direction $[0,0,1]$ at $1 / 4,0, \mathrm{z}$ with screw component $[0,0$, $1 / 2]$	2	2

2. Single crystal X-ray structure of 2.

In crystal 2, the K222 is doubly-protonated and adopts the endo-endo type conformation where the N atoms are directed towards the inner cavity of the macrocycle (Figure S 1). The O atoms also point inwards the cavity where weak hydrogen bond interaction with the endo $\mathrm{N}+-\mathrm{H} \cdots \mathrm{O}$ group is observed. In 2 , the nonbonding $\mathrm{N} \cdots \mathrm{N}$ separation $(6.340(1) \AA)$ is shorter than that of the empty cryptand $(6.871(4) \AA)$. The $\left[\mathrm{ZnI}_{4}\right]^{2-}$ anions lying in the 3 -fold crystallographic axis have tetrahedral coordination. Two $\left[\mathrm{ZnI}_{4}\right]^{2-}$ anions are positioned in a "head-to-head" fashion with intermolecular I \cdots I distance of $3.679(1) \AA$ (Figure S1a and S1c). There is a disordered water molecule that is located between two symmetry related dications. Out of the mother liquors, the crystals of $\mathbf{2}$ are stable at room temperature in contact with air for several days.

Fig. S2. (a) Crystal structure of salt 2 viewed along the b-axis; (b) detailed view of the dication showing the trifurcated weak intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (only one is showed); (c) view of two $\left[\mathrm{ZnI}_{4}\right]^{2-}$ dianions surrounded by $\mathrm{K} 222-\mathrm{H}_{2}{ }^{2+}$ dications. (d) $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ interactions observed in 2. Color code: Carbon: green; Nitrogen: blue; Oxygen: red; Nitrogen: grey; Hydrogen: light grey. Weak hydrogen bonding shown as dashed lines.

3. Single crystal X-ray structure of 3.

Using the same protocol, we set up crystallization experiments using ZnBr_{2} and ZnCl_{2} instead of ZnI_{2}. Colorless plate-like crystals precipitated after 1 hour, however the solution was left over a week to allow crystallization to proceed. Single crystal X-ray diffraction showed that an isostructural $\left[\mathrm{ZnBr}_{4}\right]^{2-}$ complex (3) to the reported ZnCl_{2} version (4), ${ }^{2}$ had been obtained ($\mathrm{R}-3 \mathrm{c}$)
and therefore, the molecular packing has been maintained in this class of hybrid metal-organic salts.

Table. S2 Relevant distances in molecular salts 1-4.

	Crystal	$\mathbf{C}-\mathbf{H} \cdots \mathbf{X}^{\mathbf{a}}$ $(\mathbf{\AA})$	$\mathbf{Z n} \cdots \mathbf{Z n}$ (\AA)	$\mathbf{N} \cdots \mathbf{N}(\mathbf{\AA})$
	$\mathbf{1}$	$4.009(9)$	-	$6.124(9)$
	$\mathbf{2}$	$3.95(1)$	$8.823(2)$	$6.34(1)$
	$\mathbf{3}$	$3.705(5)$	$8.317(1)$	$6.380(2)$
	$\mathbf{4}$	$3.770(2)$	$8.0269(8)$	$6.376(2)$

${ }^{\mathrm{a}} \mathrm{C} \cdots \mathrm{X}=\mathrm{I}, \mathrm{Br}, \mathrm{Cl}$.

Fig. S3. Ball and stick model viewed along the a-axis of isostructural crystal structures 2, 3 and 4 (a), (b) and (c) respectively.

Fig. S4. Simulated PXRD pattern of 2 and experimental PXRD pattern of a sample obtained after grinding K 222 and ZnI_{2} (1:2 molar ratio) in the presence of a drop of methanol.

Fig. S5. Experimental vs simulated from single crystal PXRD patterns of $\mathbf{3}$ measured at rt . The experimental pattern of the $\mathrm{ZnBr}_{4}{ }^{2-}$ was crystallized from methanol. Clearly, both diffraction patterns show the same crystalline structure.

Fig. S6. Experimental PXRD of obtained after crystallization of K 222 and $\mathrm{ZnI}_{2}(1: 2)$ in ethanol and simulated of $\mathbf{2}$ crystallized from methanol. Clearly, both diffraction patterns show the same crystalline structure.

Fig. S7. Experimental PXRD corresponding to the solid obtained when ZnI_{2} was added into a solution of $\mathrm{K} 222(\mathrm{MeOH})$ warmed at $45^{\circ} \mathrm{C}$. The diffraction pattern corresponds to that of $\mathbf{2}$.

Fig. S8. Experimental PXRD corresponding to the solid obtained when ZnBr_{2} was added into a solution of $\mathrm{K} 222(\mathrm{MeOH})$ cooled at $0^{\circ} \mathrm{C}$ using ice bath. The diffraction pattern corresponds to that of 3 .

Fig. S9. Experimental PXRD corresponding to the solid obtained when ZnCl_{2} was added into a solution of $\mathrm{K} 222(\mathrm{MeOH})$ cooled at $0^{\circ} \mathrm{C}$ using ice bath. The diffraction pattern corresponds to that of 4.

Fig. S10. Figure showing the μ-O-based and μ-S clusters based on ab initio calculations on the adamantanoid dianion of formula $\left[\mathrm{Zn}_{4}(\mathrm{MeO})_{6} \mathrm{I}_{4}\right]^{2-}$ and $\left[\mathrm{Zn}_{4}(\mathrm{MeS})_{6} \mathrm{I}_{4}\right]^{2-}$ at the HF-3-21G level. The volumes and distances between opposite $\mu-\mathrm{O}(\mathrm{S})$ atoms $382.5 \AA 3-4.32 \AA$ and $446.5 \AA 3-$ $5.44 \AA$ for the μ-O and μ-S clusters, respectively). An additional carbon on the alkoxide chain would probably lead to significant sterical clash with the apical I atoms.

Fig. S11. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of a 2.5 mM solution of $\mathbf{1}$ in DMSO-d6:acetone-d6 2:1 mixture at $25^{\circ} \mathrm{C}$.

Fig. S12. Portion of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of a 2.5 mM solution of $\mathbf{1}$ in DMSO-d6:acetone-d6 $2: 1$ mixture at $25^{\circ} \mathrm{C}$. Two groups of signals (labeled \bullet and \bullet) can be identified (at ppm $\delta=3.60$ $\mathrm{s}, 3.54 \mathrm{t}$ and $2.58 \mathrm{t} ; \delta=3.79 \mathrm{t}, 3.78 \mathrm{t}$ and 3.69 s) and they can be assigned to the cationic K222$\mathrm{H}_{2}{ }^{2+}$ of $\mathbf{1}$ in both its associated ion-pair and its solvated forms.

Fig. S13. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of a 2.5 mM solution of $\mathbf{2}$ in DMSO-d6:acetone-d6 2:1 mixture at $25^{\circ} \mathrm{C}$ and magnification of the $4.0-3.6 \mathrm{ppm}$ region.

Fig. S14. Spectral comparison between an equimolar solution of 1 (top) and 2 (bottom) in DMSO-d6:acetone-d6 2:1 mixture at $25^{\circ} \mathrm{C}$. Shift of the $\mathrm{K} 222-\mathrm{H}_{2}{ }^{2+}$ signals are highlighted by the black arrows.

checkCIF/PLATON (standard)

You have not supplied any structure factors. As a result the full set of tests cannot be run.

No syntax errors found.
Please wait while processing ...

Datablock: 1

Interpreting this report

```
Tmin' 0.025
Correction method= MULTI-SCAN
Data completeness=1.53/0.85 Theta(max)=65.460
R(reflections)= 0.0316( 1972) wR2(reflections)= 0.0718( 2127)
S = 1.072 Npar= 148
```

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

```
-Alert levell B
PLAT222 ALERT 3 B Large Non-Solvent H Uiso(max)/Uiso(min) ..
8.0 Ratio
```

```
O Alert level C
ABSTY02 ALERT 1 C An _exptl_absorpt_correction_type has been given
without
            a literature citation. This should be contained in the
            _exptl_absorpt_process_details field.
            A}\mathrm{ -xsorption correction given as Multi-scan
PLAT029 ALERT 3 C _diffrn_measured_fraction_theta_full Low .......
0.969
PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ
Please Check
PLAT068 ALERT 1 C Reported F000 Differs from Calcd (or Missing)...
Please Check
PLAT090_ALERT_3_C Poor Data / Parameter Ratio (Zmax > 18) .......
9.41
PLAT230 ALERT 2 C Hirshfeld Test Diff for C3 -- C4 .. 5.3
su
PLAT245_ALERT_2_C U(iso) H101 Smaller than U(eq) N1 by ...
0.023 AngSq
PLAT342 ALERT 3 C Low Bond Precision on C-C Bonds
0.0127 Ang.
```


Alert level G

FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the
data.
_chemical_formula_sum and the formula from the _atom_site*
Atom count from _chemical_formula_sum:C24 H58 I4 N2 O12
Zn4
Atom count from the _atom_site data: C24 H56 I4 N2 O12.3 Zn4
CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected.
CELLZ01 ALERT 1 G ALERT: Large difference may be due to a symmetry error - see SYMMG tests
From the CIF: _cell_formula_units_Z 4
From the CIF: _chemical_formula_sum C24 H58 I4 N2 O12 Zn4
TEST: Compare cell contents of formula and atom_site data

atom	Z*formula cif sites diff		
C	96.00	96.00	0.00
H	232.00	224.00	8.00
I	16.00	16.00	0.00
N	8.00	8.00	0.00

OALERT level $\mathbf{A}=$ Most likely a serious problem - resolve or explain
1 ALERT level $B=A$ potentially serious problem, consider carefully
8 ALERT level $C=$ Check. Ensure it is not caused by an omission or
oversight
10 ALERT level $G=$ General information/check it is not something
unexpected
6 ALERT type 1 CIF construction/syntax error, inconsistent or missing
data
5 ALERT type 2 Indicator that the structure model may be wrong or
deficient
5 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PLAT222_test
;
PROBLEM: Large Non-Solvent H Uiso(max)/Uiso(min) .. 8.0 Ratio
RESPONSE: ...
;
# end Validation Reply Form
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied

Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 18/09/2013; check.def file version of 12/09/2013

Datablock 1 - ellipsoid plot

checkCIF/PLATON (standard)

You have not supplied any structure factors. As a result the full set of tests cannot be run.

No syntax errors found.
Please wait while processing ...
Datablock: 2

CIF dictionary
Interpreting this report


```
Tmin' 0.006
Correction method= MULTI-SCAN
Data completeness=0.996 Theta(max)=65.980
R(reflections)= 0.0617( 1620) wR2(reflections)= 0.1760( 1797)
S = 1.127 Npar= 100
```

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

```
Alert level C
ABSTY02 ALERT 1 C An _exptl_absorpt_correction_type has been given
without
    a literature citation. This should be contained in the
    _exptl_absorpt_process_details field.
    Absorption correction given as Multi-scan
PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ
Please Check
PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)...
Please Check
PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density ....
2.40
PLAT222_ALERT_3_C Large Non-Solvent H Uiso(max)/Uiso(min) ..
6.5 Ratio
PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds
0.0157 Ang.
```


- Alert level G

FORMU01 ALERT 2 G There is a discrepancy between the atom counts in the
data.
_chemical_formula_sum and the formula from the _atom_site*

Atom count from _chemical_formula_sum:C18 H40 I4 N2 O6.17
Zn1
Atom count from the _atom_site data: C18 H38 I4 N2 O6.15 Zn1 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected.
CELLZ01 ALERT 1 G WARNING: H atoms missing from atom site list. Is
this intentional?
From the CIF: cell formula units Z 12
From the CIF: _chemical_formula_sum C18 H40 I4 N2 O6.17 Zn
TEST: Compare cell contents of formula and atom_site data

atom	Z*formula cif sites diff		
C	216.00	216.00	0.00
H	480.00	456.00	24.00
I	48.00	48.00	0.00
N	24.00	24.00	0.00
O	74.04	73.80	0.24
Zn	12.00	12.00	0.00

PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 4 Note
PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF
Please Do !
PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large.
0.10

```
PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually
Large. 170.68
PLAT152_ALERT_1_G The Supplied and Calc. Volume s.u. Differ by ...
4 Units
PLAT302_ALERT_4_G Anion/Solvent Disorder ........... Percentage =
N Note
PLAT311_ALERT_2_G Isolated Disordered Oxygen Atom (No H's ?) .....
O7 Check
PLAT764 ALERT 4 G Overcomplete CIF Bond List Detected (Rep/Expd).
1.13 Ratio
PLAT794_ALERT_5_G Tentative Bond Valency for Zn1 (II) .....
2.02 Note
PLAT860 ALERT 3 G Number of Least-Squares Restraints ............
2 Note
    O ALERT Ievel A = Most likely a serious problem - resolve or explain
    O ALERT level B = A potentially serious problem, consider carefully
    6 ALERT level C = Check. Ensure it is not caused by an omission or
oversight
    13 ALERT level G = General information/check it is not something
unexpected
    6 \text { ALERT type } 1 \text { CIF construction/syntax error, inconsistent or missing}
data
    6 \text { ALERT type 2 Indicator that the structure model may be wrong or}
deficient
    3 ALERT type 3 Indicator that the structure quality may be low
    2 ALERT type 4 Improvement, methodology, query or suggestion
    2 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

Datablock 2 - ellipsoid plot

Download CIF editor (publCIF) from the IUCr
Download CIF editor (enCIFer) from the CCDC
Test a new CIF entry

checkCIF/PLATON (standard)

You have not supplied any structure factors. As a result the full set of tests cannot be run.

No syntax errors found. Please wait while processing

CIF dictionary
Interpreting this report

Datablock: 3

$a=11.0600(6)$
alpha=90
beta=90
gamma=120

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

- Alert level B

PLAT306_ALERT_2_B Isolated Oxygen Atom (H-atoms Missing ?)
O1S Check

- Alert level C

ABSTY02_ALERT_1_C An _exptl_absorpt_correction_type has been given without
a literature citation. This should be contained in the
_exptI_absorpt_process_details field.
Absorption correction given as Multi-scan
CHEMW03_ALERT_2_C The ratio of given/expected molecular weight as

```
    calculated from the _atom_site* data lies outside
    the range 0.99 <> 1.01
    From the CIF: _cell_formula_units_Z 12
    From the CIF: _chemical_formula_weight 781.53
    TEST: Calculate formula weight from _atom_site_*
    atom mass num sum
    C 
    H
    N 
    O 
    Zn
    Br }79.90\quad4.00 319.6
    Calculated formula weight
    771.52
PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ
Please Check
PLAT043 ALERT 1 C Calculated and Reported Mol. Weight Differ by ..
20.07 Check
PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)...
Please Check
PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density ...
2.08
PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds
```

\qquad

```
0.0067 Ang.
```


Alert level G

```
FORMU01 ALERT 2 G There is a discrepancy between the atom counts in the
data.
_chemical_formula_sum and the formula from the _atom_site*
ata
Atom count from _chemical_formula_sum:C18 H40 Br4 N2 O7
Zn1
Atom count from the _atom_site data: C18 H38 Br4 N2 O6.5 Zn1 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected.
CELLZ01_ALERT 1_G ALERT: Large difference may be due to a symmetry error - see SYMMG tests
From the CIF: _cell_formula_units_Z 12
From the CIF: _chemical_formula_sum C18 H40 Br4 N2 O7 Zn
TEST: Compare cell contents of formula and atom_site data
\begin{tabular}{lclc} 
& \multicolumn{3}{c}{ atom } \\
\multicolumn{2}{c}{Z *formula cif sites diff } \\
C & 216.00 & 216.00 & 0.00 \\
H & 480.00 & 456.00 & 24.00 \\
Br & 48.00 & 48.00 & 0.00 \\
N & 24.00 & 24.00 & 0.00 \\
O & 84.00 & 78.00 & 6.00 \\
Zn & 12.00 & 12.00 & 0.00
\end{tabular}
PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 4 Note
PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF
Please Do !
PLAT045_ALERT_1_G Calculated and Reported Z Differ by
``` \(\qquad\)
``` 0.50 Ratio
PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large. 35.49
PLAT152_ALERT_1_G The Supplied and Calc. Volume s.u. Differ by ... 4 Units
PLAT434_ALERT_2_G Short Inter HL..HL Contact Br1 .. Br1 .
3.55 Ang.
PLAT764 ALERT 4 G Overcomplete CIF Bond List Detected (Rep/Expd).
1.13 Ratio
PLAT794_ALERT_5_G Tentative Bond Valency for Zn3 (II) .....
1.94 Note
PLAT860 ALERT 3 G Number of Least-Squares Restraints
``` \(\qquad\)
```

2 Note

```
```

    O ALERT level A = Most likely a serious problem - resolve or explain
    1 ALERT level B = A potentially serious problem, consider carefully
    7 ALERT level C = Check. Ensure it is not caused by an omission or
    oversight
12 ALERT level G = General information/check it is not something
unexpected
8 ALERT type 1 CIF construction/syntax error, inconsistent or missing
data
7 ALERT type 2 Indicator that the structure model may be wrong or
deficient
2 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check

```

\section*{Validation response form}

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.
\# start Validation Reply Form
_vrf_PLAT306_test_trigonal
;
PROBLEM: Isolated Oxygen Atom (H-atoms Missing ?) O1S
Check
RESPONSE: ...
;
\# end Validation Reply Form

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

\section*{Publication of your CIF in IUCr journals}

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or \(E\), you should make sure that full publication checks are run on the final version of your CIF prior to submission.

\section*{Publication of your CIF in other journals}

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

\section*{Datablock 3 - ellipsoid plot}

\footnotetext{
1 G. M. Sheldrick, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2008, 64, 112.
2 A. N. Chekhlov, Russ. J. Coord. Chem. 2007, 33, 932.
}```

