Synthesis and mesophase characterization of novel Methacrylate based thermotropic liquid crystalline monomers and their polymers
G. Siva Mohan Reddy**a, T. Narasimhaswamy ${ }^{\text {b }}$ and K. Mohana Raju*a
${ }^{\text {a}}$ Department of Polymer Science \& Technology, Sri Krishnadevaraya University, Anantapur 515003,
 India.

Electronic Supplementary Information (ESI)

General procedure for the synthesis of intermediates, monomers and polymers

Synthesis of benzyloxy benzoic acid (1)

In a typical experiment, $17.5 \mathrm{~g}(130 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $15.2 \mathrm{~g}(100 \mathrm{mmol})$ of 4-hydroxymethyl benzoate were taken in 500 ml two necked round bottom (RB) flask and were dissolved in 150 ml of DMF. The mixture was stirred and heated to $90^{\circ} \mathrm{C}$, followed by the drop wise addition of 100 ml DMF solution containing $17.1 \mathrm{~g}(100 \mathrm{mmol})$ of benzylbromide. The temperature of the mixture was maintained at $90{ }^{\circ} \mathrm{C}$ for 5 h . Then, the reaction mixture was poured into 1 L of distilled water. The precipitate was filtered, washed with $5 \% \mathrm{KOH}$ and it was transferred in to 500 ml round bottom flask. To this, $12 \mathrm{~g}(210 \mathrm{mmol})$ of $\mathrm{KOH}, 100 \mathrm{ml}$ of ethanol and 100 ml of distilled water were added and the mixture was refluxed for 1 h . Then, the solution was allowed to cool and poured into 1 L of distilled water and neutralized with 1 N HCL in order to obtain precipitate. The precipitate was filtered, washed with distilled water and dried under vacuum. The product was purified by recrystallization from methanol. The product was a white solid.

Yield: 87%, melting point (m.p): $190{ }^{\circ} \mathrm{C}$, FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2972\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 2665,2547\left(\mathrm{O}-\mathrm{H}_{\text {str }}\right.$ of carboxilic acid) $1682\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right.$ of carboxylic acid $), 1603$ and $1577\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1426\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right)$, 1256 and 1167 (C-O-C asym sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ppm (Acetone- d_{6}): 7.97 (d, 2H), $7.47(\mathrm{~d}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}) 7.10(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ppm
(Acetone- d_{6}): $\delta 166.49,162.70,136.69,128.55,128.03,127.75,123.05,144.57$ and 69.83 . EI-MS: $\mathrm{m} / \mathrm{z} 228.2\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3}$: C 73.61, H 5.29. Found: C 73.43 and $\mathrm{H} 5.40 \%$.

Synthesis of 4-ethoxyphenyl 4-(benzyloxy)benzoate (2a)

It was also prepared by a two step method. In a representative experiment, $22.8 \mathrm{~g}(100 \mathrm{mmol}) 4$ benzyloxy benzoic acid was placed in a 250 ml RB flask. To that, $29.7 \mathrm{~g}(250 \mathrm{mmol})$ thionyl chloride was added and refluxed for one hour. The excess thionyl chloride was removed by using a vacuum pump. 4-ethoxyphenol $13.3 \mathrm{~g}(100 \mathrm{mmol})$ and $18.3 \mathrm{~g}(180 \mathrm{mmol})$ of triethylamine were dissolved in 200 ml of MEK in a 500 ml RB flask which was cooled to $0^{\circ} \mathrm{C}$. To this 4-benzyloxybenzoylchloride was added dropwise at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 3 h at room temperature. Then, the triethylamine salt was filtered off and the solvent was evaporated. The white solid was obtained after recrystallization from methanol.

Yield: 70%, m.p: $141^{\circ} \mathrm{C}$, FT-IR (KBr, cm ${ }^{-1}$): 3060 (aromatic C- $\mathrm{H}_{\text {str }}$), 2927, $2884\left(\mathrm{C}^{-} \mathrm{H}_{\text {str }}\right), 1725$ $\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1604,1508\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1453$ and $1385\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1249$ and $1200\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {asym }}\right.$ \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR} \operatorname{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 8.14(\mathrm{~d}, 2 \mathrm{H}), 7.44(\mathrm{~d}, 2 \mathrm{H}), 7.39(\mathrm{t}, 2 \mathrm{H})$, $7.34(\mathrm{t}, 1 \mathrm{H}), 7.09(\mathrm{~d}, 2 \mathrm{H}), 7.02(\mathrm{~d}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{q}, 2 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ppm $\left(\mathrm{CDCl}_{3}\right): \delta 165.34,163.03,156.69,144.48,136.25,132.36,128.82,128.37,127.62$, $122.59,122.30,115.15,114.75,70.25,63.96$ and 14.05. EI-MS: m/z $348.3\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}: \mathrm{C} 75.84, \mathrm{H} 5.78$. Found: C 75.63 and H 5.54%.

4-butoxyphenyl 4-(benzyloxy) benzoate (2b)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (2a).

Yield: 72% m.p: $142-144{ }^{\circ} \mathrm{C}$, FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3058\left(\right.$ aromatic C-H $\left.{ }_{\text {str }}\right), 2933,2870\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 1725$ $\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1604,1508\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1453$ and $1383\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1248$ and $1193\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {asym }}\right.$ \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right): \delta 8.13(\mathrm{~d}, 2 \mathrm{H}), 7.43(\mathrm{~d}, 2 \mathrm{H}), 7.40(\mathrm{t}, 2 \mathrm{H})$,
$7.31(\mathrm{t}, 1 \mathrm{H}), 7.09(\mathrm{~d}, 2 \mathrm{H}), 7.03(\mathrm{~d}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{t}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.47$ $(\mathrm{m}, 2 \mathrm{H})$ and $0.97(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 165.21,162.90,156.78,144.30,136.13,132.23$, $128.68,128.23,127.48,122.43,122.10,115.03,114.62,70.11,68.04,31.30,19.22$ and 13.85 . EIMS: m/z $376.4\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{4}$: C 76.57, H 6.42. Found: C 76.68 and H 6.54%.

4-hexyloxyphenyl 4-(benzyloxy) benzoate (2c)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (2a).

Yield: 70\%, m.p: $128-130^{\circ} \mathrm{C}$, FT-IR (KBr, cm $\left.{ }^{-1}\right): 3060\left(\right.$ aromatic C- $\left.\mathrm{H}_{\text {str }}\right)$, 2928, $2868\left(\mathrm{C}^{\left(\mathrm{H}_{\text {str }}\right), 1725}\right.$ $\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1605,1580$ and $1510\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1455$ and $1383\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1193$ and $1171\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {str }}\right.$ of ester and ether respectively) ${ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 8.14(\mathrm{~d}, 2 \mathrm{H}), 7.43(\mathrm{~d}, 2 \mathrm{H}), 7.39(\mathrm{t}, 2 \mathrm{H})$, $7.33(\mathrm{t}, 1 \mathrm{H}), 7.09(\mathrm{~d}, 2 \mathrm{H}), 7.04(\mathrm{~d}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{t}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.45$ $(\mathrm{m}, 2 \mathrm{H}), 1.33(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 165.23,162.92,156.80,144.33$, $136.15,132.24,128.70,128.24,127.48,122.44,122.20,115.06,114.64,70.13,68.40,35.59,29.24$, 25.71, 22.61 and 14.05. EI-MS: m/z $404.4\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{4}$: C 77.20, H 6.97. Found: C 77.43 and $\mathrm{H} 6.74 \%$.

4-octyloxyphenyl 4-(benzyloxy)benzoate (2d)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (2a).

Yield: 70%, m.p: $128{ }^{\circ} \mathrm{C}$, FT-IR (KBr, cm ${ }^{-1}$): 3058 (aromatic C-H $\mathrm{H}_{\text {str }}$), 2923, $2854\left(\mathrm{C}^{\left.-\mathrm{H}_{\text {str }}\right), 1725}\right.$ $\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1604$ and $1510\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1467$ and $1384\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1248$ and $1192\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {asym }}\right.$ \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR} \operatorname{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 8.14(\mathrm{~d}, 2 \mathrm{H}), 7.43(\mathrm{~d}, 2 \mathrm{H}), 7.39(\mathrm{t}, 2 \mathrm{H})$, $7.35(\mathrm{t}, 1 \mathrm{H}), 7.09(\mathrm{~d}, 2 \mathrm{H}), 7.04(\mathrm{~d}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{t}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.49$ $(\mathrm{m}, 2 \mathrm{H}), 1.31(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right): \delta 165.22,162.92,156.80,144.34$, 136.16, 132.23, 128.69, 128.24, 127.48, 122.43, 122.22, 115.06, 114.64, 70.13, 68.40, 31.82, 29.36,
29.36, 29.25, 26.04, 22.66 and 14.11. EI-MS: m/z $432.5\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{2} \mathrm{O}_{4}$: C 77.77, H 7.45. Found: C 77.44 and H 7.27 \%.

4-decyloxyphenyl 4-(benzyloxy)benzoate (2e)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (2a).

Yield: 70%, m.p: $122-124^{\circ} \mathrm{C}$, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3059 (aromatic $\mathrm{CH}_{\text {str }}$), 2921, $2852\left(\mathrm{C}_{-\mathrm{H}_{\text {str }}}\right), 1725$ $\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1605$ and $1509\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1470$ and $1384\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1250$ and 1194 (C-O-C asym \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right): \delta 8.14(\mathrm{~d}, 2 \mathrm{H}), 7.44(\mathrm{~d}, 2 \mathrm{H}), 7.40(\mathrm{t}, 2 \mathrm{H})$, $7.34(\mathrm{t}, 1 \mathrm{H}), 7.09(\mathrm{~d}, 2 \mathrm{H}), 7.03(\mathrm{~d}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{t}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.45$ $(\mathrm{m}, 2 \mathrm{H}), 1.27(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right): \delta 165.25,162.92,156.80,144.32$, $136.15,132.24,128.71,128.25,127.48,122.43,122.21,115.06,114.64,70.15,68.41,31.90,29.58$, 29.56, 29.40, 29.33, 29.28, 26.04, 22.69 and 14.12. EI-MS: m/z 460.6 (M^{+}). Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{4}$: C 78.65, H 7.87. Found: C 78.83 and H 7.64%.

4-dodecyloxyphenyl 4-(benzyloxy)benzoate (2f)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (2a).

Yield: 70\%, m.p: $120-122^{\circ} \mathrm{C}$, FT-IR (KBr, cm ${ }^{-1}$): 3058 (aromatic C-H ${ }_{\text {str }}$), 2919, $2850\left(\mathrm{CH}_{\text {str }}\right), 1725$ $\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1605$ and $1509\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1469$ and $1384\left(\mathrm{CH}_{\text {ben }}\right), 1193$ and $1169\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {asym }}\right.$ \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR} \operatorname{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 8.14(\mathrm{~d}, 2 \mathrm{H}), 7.44(\mathrm{~d}, 2 \mathrm{H}), 7.40(\mathrm{t}, 2 \mathrm{H})$, $7.34(\mathrm{t}, 1 \mathrm{H}), 7.09(\mathrm{~d}, 2 \mathrm{H}), 7.05(\mathrm{~d}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{t}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~m}$, 2H), $1.26(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 165.24,162.92,156.80,144.32,136.15$, $132.24,128.70,128.25,127.48,122.43,122.21,115.06,114.64,70.15,68.41,31.92,29.67,29.64$, 29.60, 29.40, 29.35, 29.28,26.04, 22.70 and 14.13. EI-MS: m/z $488.6\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{4}$: C 78.65, H 8.25. Found: C 78.43 and H 8.54%.

Synthesis of 4-ethoxyphenyl 4-hydroxybenzoate (3a)

In a typical experiment, $18.09 \mathrm{~g}(52.5 \mathrm{mmol})$ 4-ethoxyphenyl 4-(benzyloxy) benzoate was placed in a 500 ml three necked RB flask and 100 ml of tetrahydrofuran was added. $1.8 \mathrm{~g} \mathrm{10} \mathrm{\%} \mathrm{Pd-carbon} \mathrm{was}$ added to the solution and hydrogen gas was purged at room temperature for 48 h to get debenzylated product. ${ }^{1-3}$ Then the Pd / C catalyst was removed by filtering the reaction mixture through Celite-540 and upon evaporation of the solvent yielded the white solid which was recrystallized from Acetonitrile.

Yield: 90%, m.p: $220{ }^{\circ} \mathrm{C}$, FT-IR (KBr, cm $\left.{ }^{-1}\right): 3395\left(\mathrm{O}-\mathrm{H}_{\text {str }}\right), 2989$, 2925, $2882 \quad\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 1704$ $\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1607,1589$ and $1508\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1480$ and $1444\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1278,1218$ and $1192(\mathrm{C}-$ $\mathrm{O}-\mathrm{C}_{\text {str }}$ of ester and ether respectively)

4-butoxyphenyl 4-hydroxybenzoate (3b)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (3a).

Yield: 92%, m.p: $167-169^{\circ} \mathrm{C}$ FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3373\left(\mathrm{O}-\mathrm{H}_{\text {str }}\right), 2938,2872\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 1701\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right)$, 1589 and $1508\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1471$ and $1444\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1218$ and $1191\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {asym }}\right.$ \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right): \delta 8.09(\mathrm{~d}, 2 \mathrm{H}), 7.09(\mathrm{~d}, 2 \mathrm{H}), 6.92(\mathrm{~d}, 2 \mathrm{H}), 6.86$ $(\mathrm{d}, 2 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{t}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H})$ and $0.97(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right): \delta 165.63,160.56,156.85,144.26,132.54,122.45,121.83,115.41,115.13,68.16,31.31$, 19.23 and 14.84. EI-MS: m/z $286.3\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$: C 71.31, H 6.33. Found: C 71.53 and H 6.54%.

4-hexyloxyphenyl 4-hydroxybenzoate (3c)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (3a).

Yield: 92%, m.p: $162-164^{\circ} \mathrm{C}$, FT-IR (KBr, cm $\left.{ }^{-1}\right)$: $3392\left(\mathrm{O}-\mathrm{H}_{\mathrm{str}}\right), 2931,2864\left(\mathrm{C}-\mathrm{H}_{\mathrm{str}}\right), 1701\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right)$, 1589 and $1509\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1468\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1194$ and $1161\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {str }}\right.$ of ester and ether respectively) ${ }^{1} \mathrm{H}-\mathrm{NMR} \operatorname{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 8.08(\mathrm{~d}, 2 \mathrm{H}), 7.09(\mathrm{~d}, 2 \mathrm{H}), 6.90(\mathrm{~d}, 2 \mathrm{H}), 6.87(\mathrm{~d}, 2 \mathrm{H}), 6.24(\mathrm{~s}$, $1 \mathrm{H}), 3.95(\mathrm{t}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~m}, 4 \mathrm{H})$ and $0.90(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right)$: $\delta 165.75,160.66,156.86,144.25,132.54,122.45,121.72,115.43,115.15,68.50,31.58,29.23$, 25.70, 22.60 and 14.04. EI-MS: m/z $314.3\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}$: C 72.58, H 7.05. Found: C 72.43 and H 7.34 \%.

4-Octyloxyphenyl 4-hydroxybenzoate (3d)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (3a).

Yield: 90%, m.p: $160-162{ }^{\circ} \mathrm{C}$, FT-IR (KBr, cm $\left.{ }^{-1}\right): 3389\left(\mathrm{O}-\mathrm{H}_{\text {str }}\right), 2926,2856\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 1701\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right)$, 1587 and $1509\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1469\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1219$ and 1193 ($\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {asym }}$ \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR} \operatorname{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 8.07(\mathrm{~d}, 2 \mathrm{H}), 7.09(\mathrm{~d}, 2 \mathrm{H}), 6.92(\mathrm{~d}, 2 \mathrm{H}), 6.86(\mathrm{~d}, 2 \mathrm{H})$, $6.38(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{t}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~m}, 8 \mathrm{H})$ and $0.88(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right): \delta 165.86,160.73,156.86,144.22,132.54,122.45,121.61,115.44,115.14,68.50,31.81$, 29.36, 29.24, 26.03, 22.66 and 14.11. EI-MS: m/z $342.4\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}: \mathrm{C} 73.65, \mathrm{H}$ 7.65. Found: C 73.41 and H 7.37 \%.

4-Decyloxyphenyl 4-hydroxybenzoate (3e)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (3a).

Yield: 90%, m.p: $148-150{ }^{\circ} \mathrm{C}$, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3403\left(\mathrm{O}-\mathrm{H}_{\text {str }}\right), 2922,2852\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 1702\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right)$, 1587 and $1508\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1469\left(\mathrm{C}_{-\mathrm{H}_{\text {ben }}}\right), 1217$ and 1193 (C-O-C asym \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right): \delta 8.07(\mathrm{~d}, 2 \mathrm{H}), 7.09(\mathrm{~d}, 2 \mathrm{H}), 6.92(\mathrm{~d}, 2 \mathrm{H}), 6.86(\mathrm{~d}, 2 \mathrm{H})$, $6.42(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{t}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 12 \mathrm{H})$ and $0.88(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ppm
$\left(\mathrm{CDCl}_{3}\right): \delta 165.87,160.75,156.86,144.22,132.54,122.45,121.59,115.44,115.14,68.50,31.90$, 29.58, 29.40, 29.33, 29.26, 26.03, 22.69 and 14.13. . EI-MS: m/z $370.4\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{4}$: C 74.56, H 8.16. Found: C 74.41 and H 8.33%.

4-Dodecyloxyphenyl 4-hydroxybenzoate (3f)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (3a).

Yield: 85%, m.p: $140-142{ }^{\circ} \mathrm{C}$, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3401\left(\mathrm{O}-\mathrm{H}_{\text {str }}\right), 2921,2851\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 1704\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right)$, 1587 and $1509\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1469\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1194$ and 1161 (C-O-C $\mathrm{C}_{\text {asym }}$ \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right): \delta 8.08(\mathrm{~d}, 2 \mathrm{H}), 7.10(\mathrm{~d}, 2 \mathrm{H}), 6.92(\mathrm{~d}, 2 \mathrm{H}), 6.86(\mathrm{~d}, 2 \mathrm{H})$, $6.34(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{t}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~m}, 4 \mathrm{H})$ and $0.88(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right): \delta 165.73,160.61,156.94,144.33,132.64,122.53,121.93,115.49,115.21,68.57,32.02$, 29.76, 29.74, 29.71, 29.50, 29.45, 29.35, 26.13, 22.79 and 14.23. . EI-MS: m/z 398.53 (M+). Anal. Calc. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4}$: C 75.34, H 8.59. Found: C 75.49 and H 8.39%.

Synthesis of 4-[(6-hydroxyhexyl)oxy]benzoic acid (5)

In a 500 ml three necked RB flask 15.2 g (100 mmol) of 4-hydroxy methyl benzoate and 20 g (150 mmol) of $\mathrm{K}_{2} \mathrm{CO}_{3}$ were taken and were dissolved in 200 ml of DMF. The mixture was stirred and heated to $90^{\circ} \mathrm{C}$, followed by the drop wise addition of 100 ml DMF solution containing $13.6 \mathrm{~g}(100$ mmol) of 6 -chlorohexanol. The temperature of the mixture was maintained at $90^{\circ} \mathrm{C}$ for 5 h . Then, the reaction mixture was poured into 1 L of distilled water and transferred to a separating funnel and extracted with diethyl ether. The ether layer was washed using 10% sodium hydroxide solution and distilled water and the organic layer was dried with anhydrous sodium sulfate. Upon evaporation of ether, a light brown liquid 4-hydroxy hexyloxy methyl benzoate resulted (4).

4-hydroxy hexyloxy methyl benzoate (4) was placed in a one-liter single necked round bottom flask equipped with double wall water condenser. Ethanol $(150 \mathrm{ml})$ and $14 \mathrm{~g}(250 \mathrm{mmol})$ of potassium
hydroxide dissolved in distilled water $(150 \mathrm{ml})$ were added to the flask. The solution was refluxed for 1 hour and allowed to cool to room temperature. It was then neutralized with 1 N HCL in order to obtain a white precipitate. The compound was purified by recrystallization from toluene.

Yield: 80%, m.p: $142{ }^{\circ} \mathrm{C}$, FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3338\left(\mathrm{O}-\mathrm{H}_{\text {str }}\right), 2947,2862\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 2531\left(\mathrm{O}-\mathrm{H}_{\text {str }}\right.$ of carboxylic acid) $1671\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right.$ of carboxylic acid $), 1604$ and $1511\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1420\left(\mathrm{CH}_{\text {ben }}\right)$, 1283, 1254 and 1169 (C-O-C asym \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ppm (DMSO- d_{6}): $\delta 7.83(\mathrm{~d}, 2 \mathrm{H}), 6.94(\mathrm{~d}, 2 \mathrm{H}), 3.95(\mathrm{t}, 2 \mathrm{H}), 3.33(\mathrm{t}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ppm (DMSO-d ${ }_{6}$): $\delta 167.59,162.83,131.88,123.23,114.71,68.25,61.17,32.92,29.09,25.86$ and $25.74 .$. EI-MS: m/z $238.2\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$: C 65.52, H 7.61. Found: C 65.52 and $\mathrm{H} 7.88 \%$.

Synthesis of 4-(\{6-[(2-methylacryloyl)oxy]hexyl\}oxy)benzoic acid (6)

In a representative experiment, 250 ml double neck round bottom flask equipped with a stirrer and a dropping funnel, is placed in a thermostat water bath at $0{ }^{\circ} \mathrm{C} .12 \mathrm{~g}$ (50 mmol). 4-[(6hydroxyhexyl)oxy]benzoic acid 8.5 ml of triethylamine (60 mmol and $0.6 \mathrm{~g}(5 \mathrm{mmol}$) of 4dimethylaminopyridine were placed in RB flask. 20 ml of dichloromethane is added to the flask and $7.5 \mathrm{~g}(50 \mathrm{mmol})$ of methacrylic anhydride is added through a dropping funnel over a period of 30 minutes. The contents were stirred for five hours at $0^{\circ} \mathrm{C}$. Then, the solution was transferred to a separating funnel and extracted with 50 ml (10\%) hydrochloricacid and a white solid obtained by evaporating dichloromethane is purified with a 2:4 mixture of ethyl acetate and hexane as a eluent by column chromatography.

Yield: 60%, m.p: $86{ }^{\circ} \mathrm{C}$, FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2938,2858\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 2679,2566\left(\mathrm{O}-\mathrm{H}_{\text {str }}\right.$ of carboxylic acid) $1714\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1685\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right.$ of carboxylic acid) 1606 and $1513\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1468(\mathrm{C}-$ $\left.\mathrm{H}_{\text {ben }}\right), 1255$ and 1172 (C-O-C asym \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right): \delta$ $8.05(\mathrm{~d}, 2 \mathrm{H}), 6.90(\mathrm{~d}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{t}, 2 \mathrm{H}), 4.01(\mathrm{t}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~m}$, $2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H})$ and $1.48(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 172.12,167.67,163.67,144.33$,
$132.52,132.42125 .40,121.58,114.25,68.13,64.71,29.07,28.62,25.86,25.78,29.45$ and 18.42. EI-MS: m/z $306.3\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$: C 66.64, H 7.23. Found: C 66.41 and $\mathrm{H} 7.03 \%$.

Synthesis of Monomers

4-[(ethoxyphenoxy)carbonyl] phenyl 4-[(2-methylacyloyloxy)hexyloxy]benzoate (7a)

In a typical experiment, $6.45 \mathrm{~g}(25 \mathrm{mmol}) 3 \mathrm{a}$ and $7.65 \mathrm{~g}(25 \mathrm{mmol})$ compound 6 were placed in a 500 ml conical falsk and were dissolved in 100 ml THF. To this stirred solution, $6.18 \mathrm{~g}(30 \mathrm{mmol}) \mathrm{N}, \mathrm{N}-$ dicyclohexylcarbodiimide (DCC) dissolved in 50 ml dichloromethane was added, followed by the addition of 4-dimethylaminopyridine (2.5 mmol) and stirring was continued overnight at room temperature. Filtration of solid dicyclohexyl urea and subsequent evaporation of the solvent yielded a semi solid which was purified, by column chromatography, using $2: 4$ mixture of ethyl acetate and hexane as a eluent in order to obtain colourless solid.

Yield: 60%, m.p: Nematic, Smectic [94.3-225 ${ }^{\circ} \mathrm{C}$], FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3071 (aromatic C-H ${ }_{\text {str }}$), 2946, $2870\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 1725\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1634\left(\mathrm{C}=\mathrm{C}\right.$ of methacrylic unit) 1606 and $1513\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1476$ $\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1245$ and $1190\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {asym }} \&\right.$ sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right)$: $\delta 8.26(\mathrm{~d}, 2 \mathrm{H}), 8.15(\mathrm{~d}, 2 \mathrm{H}), 7.36(\mathrm{~d}, 2 \mathrm{H}), 7.11(\mathrm{~d}, 2 \mathrm{H}), 6.98(\mathrm{~d}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 2 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.55$ $(\mathrm{s}, 1 \mathrm{H}), 4.16(\mathrm{t}, 2 \mathrm{H}), 4.04(\mathrm{t}, 2 \mathrm{H}), 4.04(\mathrm{q}, 2 \mathrm{H}) 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H})$ and $1.48(\mathrm{~m}$, $4 \mathrm{H}), 1.40(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \operatorname{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 167.62164 .94,164.43,163.80,156.81,155.36,144.31$, 136.56, 132.52, 131.84, 127.12, 125.39, 122.50, 122.15, 121.13, 115.19, 114.48, 68.23, 64.68, 63.94, 29.08, 28.64, 25.87, 25.79, 18.42 and 14.95. EI-MS: m/z $546.6\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{8}$: C 70.31, H 6.26. Found: C 70.57 and H 6.44%.

4-[(butoxyphenoxy)carbonyl] phenyl 4-[(2-methylacyloyloxy)hexyloxy]benzoate (7b)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (7a).

Yield: 58\%, m.p: Nematic, Smectic [66.4-206 $\left.{ }^{\circ} \mathrm{C}\right]$, FT-IR (KBr, cm ${ }^{-1}$): 3071 (aromatic C-H ${ }_{\text {str }}$), 2942, $2869\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 1733\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1634\left(\mathrm{C}=\mathrm{C}\right.$ of methacrylic unit) 1604 and $1508\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1471$ $\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1193$ and $1162\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {asym }} \&\right.$ sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right):$ $\delta 8.27(\mathrm{~d}, 2 \mathrm{H}), 8.15(\mathrm{~d}, 2 \mathrm{H}), 7.34(\mathrm{~d}, 2 \mathrm{H}), 7.11(\mathrm{~d}, 2 \mathrm{H}), 6.98(\mathrm{~d}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 2 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.55$ $(\mathrm{s}, 1 \mathrm{H}), 4.17(\mathrm{t}, 2 \mathrm{H}), 4.05(\mathrm{t}, 2 \mathrm{H}), 3.96(\mathrm{t}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 4 \mathrm{H})$ and $1.52(\mathrm{~m}$, $6 \mathrm{H}), 0.98(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 167.64,164.97,164.44,163.80,157.03,155.35,144.25$, $136.56,132.52,131.85,127.13,125.40,122.47,122.14,121.12,115.20,114.47,68.23,68.18$, 64.68, 31.40, 29.08, 28.63, 25.87, 25.79, 19.34, 18.45 and 13.96. EI-MS: m/z $574.6\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{O}_{8}$: C 71.06, H 6.66. Found: C 71.29 and $\mathrm{H} 6.47 \%$.

4-[(hexyloxyphenoxy)carbonyl]phenyl4-[(2-methylacyloyloxy)hexyloxy]benzoate (7c)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (7a)

Yield: 60%, m.p: Nematic, Smectic [66-182 ${ }^{\circ}$ C], FT-IR (KBr, cm ${ }^{-1}$): 3071 (aromatic C- $\mathrm{H}_{\text {str }}$), 2951, $2865\left(\mathrm{C}_{-\mathrm{H}_{\text {str }}}\right), 1739\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1634\left(\mathrm{C}=\mathrm{C}\right.$ of methacrylic unit) 1601 and $1507\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1470$ $\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1190$ and $1160\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {asym }} \&\right.$ sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right)$: $\delta 8.25(\mathrm{~d}, 2 \mathrm{H}), 8.15(\mathrm{~d}, 2 \mathrm{H}), 7.34(\mathrm{~d}, 2 \mathrm{H}), 7.12(\mathrm{~d}, 2 \mathrm{H}), 6.98(\mathrm{~d}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 2 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.55$ $(\mathrm{s}, 1 \mathrm{H}), 4.16(\mathrm{t}, 2 \mathrm{H}), 4.04(\mathrm{t}, 2 \mathrm{H}), 3.95(\mathrm{t}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}$, $2 \mathrm{H}), 1.50(\mathrm{~m}, 6 \mathrm{H}), 1.32(\mathrm{~m}, 4 \mathrm{H}) 0.91(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 167.61,164.94,164.42$, $163.81,157.02,155.35,144.25,136.56,132.52,131.84,127.12,125.40,122.47,122.14,121.12$, $115.19,114.48,68.50,68.22,64.68,31.69,29.34,29.08,28.64,25.82,25.80,22.72,18.45$ and 14.16. EI-MS: m/z $602.7\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{O}_{8}$: C 71.73, H 7.02. Found: C 71.51 and $\mathrm{H} 7.18 \%$.

4-[(octyloxyphenoxy)carbonyl]phenyl4-[(2-methylacyloyloxy)hexyloxy]benzoate (7d)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (7a).

Yield: 58\%, m.p: Nematic, Smectic [67-165 ${ }^{\circ} \mathrm{C}$], FT-IR (KBr, cm ${ }^{-1}$): 3074 (aromatic C- $\mathrm{H}_{\text {str }}$), 2931, $2860\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 1734\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1642\left(\mathrm{C}=\mathrm{C}\right.$ of methacrylic unit) 1604 and $1508\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1470$ $\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1194$ and 1163 (C-O-C ${ }_{\text {asym }} \&$ sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right)$: $\delta 8.25(\mathrm{~d}, 2 \mathrm{H}), 8.15(\mathrm{~d}, 2 \mathrm{H}), 7.34(\mathrm{~d}, 2 \mathrm{H}), 7.12(\mathrm{~d}, 2 \mathrm{H}), 6.98(\mathrm{~d}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 2 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.55$ $(\mathrm{s}, 1 \mathrm{H}), 4.17(\mathrm{t}, 2 \mathrm{H}), 4.05(\mathrm{t}, 2 \mathrm{H}), 3.95(\mathrm{t}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}$, $2 \mathrm{H}), 1.50(\mathrm{~m}, 6 \mathrm{H}), 1.30(\mathrm{~m}, 8 \mathrm{H}) 0.89(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 167.60,164.93,164.42$, $163.81,157.03,155.36,144.27,136.57,132.52,131.83,127.14,125.37,122.46,122.13,121.14$, $115.20,114.48,68.52,68.23,64.67,31.92,29.46,29.34,29.08,28.64,26.14,25.87,25.79,22.76$, 18.44 and 14.22. EI-MS: m/z $630.76\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{O}_{8}$: C 72.35, H 7.35. Found: C 72.49 and H 7.15 \%.

4-[(decyloxyphenoxy)carbonyl]phenyl4-[(2-methylacyloyloxy)hexyloxy]benzoate (7e)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (7a).

Yield: 55\%, m.p: Nematic, Smectic [59-160 ${ }^{\circ} \mathrm{C}$], IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3071 (aromatic C- $\mathrm{H}_{\text {str }}$), 2926, 2856 $\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 1730\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1634\left(\mathrm{C}=\mathrm{C}\right.$ of methacrylic unit) 1604 and $1510\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic), $1470(\mathrm{C}-$ $\mathrm{H}_{\text {ben }}$), 1196 and 1165 (C-O-C asym \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right): \delta$ $8.26(\mathrm{~d}, 2 \mathrm{H}), 8.15(\mathrm{~d}, 2 \mathrm{H}), 7.34(\mathrm{~d}, 2 \mathrm{H}), 7.12(\mathrm{~d}, 2 \mathrm{H}), 6.98(\mathrm{~d}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 2 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~s}$, $1 \mathrm{H}), 4.17(\mathrm{t}, 2 \mathrm{H}), 4.04(\mathrm{t}, 2 \mathrm{H}), 3.95(\mathrm{t}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H})$, $1.50(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 12 \mathrm{H}) 0.88(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \operatorname{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 167.58,164.92$, $164.39,163.81,157.03,155.36,144.26,136.56,132.52,131.83,127.13,125.38,122.46,122.14$, $121.13,115.19,114.48,68.50,68.22,64.67,32.01,29.70,29.68,29.51,29.44,29.38,29.08,28.64$, 26.15, 25.87, 25.80, 22.79, 18.45 and 14.25. EI-MS: m/z $658.8\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{O}_{8}: \mathrm{C}$ 72.92, H 7.64. Found: C 72.81 and H 7.88%.

4-[(dodecyloxyphenoxy)carbonyl] phenyl 4-[(2-methylacyloyloxy)hexyloxy]benzoate (7f)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (7a).

Yield: 60%, m.p: Nematic, Smectic [61-155 ${ }^{\circ} \mathrm{C}$] FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3071$ (aromatic C- $\mathrm{H}_{\text {str }}$), 2920, $2852\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 1728\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1634\left(\mathrm{C}=\mathrm{C}\right.$ of methacrylic unit) 1604 and $1510\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1470$ $\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1197$ and $1164\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {asym }} \&\right.$ sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right)$: $\delta 8.26(\mathrm{~d}, 2 \mathrm{H}), 8.15(\mathrm{~d}, 2 \mathrm{H}), 7.34(\mathrm{~d}, 2 \mathrm{H}), 7.10(\mathrm{~d}, 2 \mathrm{H}), 6.98(\mathrm{~d}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 2 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.55$ $(\mathrm{s}, 1 \mathrm{H}), 4.16(\mathrm{t}, 2 \mathrm{H}), 4.04(\mathrm{t}, 2 \mathrm{H}), 3.94(\mathrm{t}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}$, $2 \mathrm{H}), 1.47(\mathrm{~m}, 6 \mathrm{H}), 1.30(\mathrm{~m}, 18 \mathrm{H}) 0.88(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 167.63,164.97,164.44$, $163.80,157.02,155.34,144.23,136.56,132.52,131.85,127.12,125.41,122.47,122.15,121.11$, $115.19,114.47,68.51,68.22,64.69,32.02,29.77,29.75,29.72,29.70,29.51,29.47,29.37,29.08$, 28.64, 26.14, 25.87, 25.80, 22.80, 18.46 and 14.26. EI-MS: m/z $686.53\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{O}_{8}$: C 73.44, H 7.92. Found: C 73.59 and H 8.07%.

Synthesis of Polymers

Synthesis of poly\{4-[(ethoxyphenoxy)carbonyl] phenyl 4-[(2-methylacyloyloxy)hexyloxy]benzoate\} (8a)

In a typical experiment, 1 g of 4-[(ethoxyphenoxy)carbonyl] phenyl 4-[(2methylacyloyloxy)hexyloxy]benzoate was placed in a polymerization tube. To that, 1, 4- dioxan (30 $\mathrm{ml})$ and 0.01 g of benzoylperoxide were added. The solution was flushed with nitrogen gas for few minutes, tightly closed and kept in thermostated water bath at $70 \pm 1^{\circ} \mathrm{C}$. The polymerization was continued for 24 h . The viscous polymer, thus formed, was precipitated by pouring into methanol. The white polymer solid obtained was further purified by redissolving it in chloroform and precipitated using methanol.

Yield: 65%, FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3079$ (aromatic C-H $\left.\mathrm{H}_{\text {str }}\right), 2939,2865\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 1733\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1604$ and $1508\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1475\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1192$ and 1161 (C-O-C asym \& sym str of ester and ether
respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right): \delta 8.15(\mathrm{~d}, 2 \mathrm{H}), 8.04(\mathrm{~d}, 2 \mathrm{H}), 7.24(\mathrm{~d}, 2 \mathrm{H}), 7.04(\mathrm{~d}, 2 \mathrm{H}), 6.85$ (d, 4H), $3.97(\mathrm{t}, 6 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~m}, 8 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right): \delta 164.80,164.22,163.62,156.80,155.16,144.21,132.47,131.76,127.13,122.49$, $122.09,121.25,115.10,114.39,68.19,65.12,63.87,45.28,44.95,29.16,28.21,26.06,25.88$ and 14.95.

Poly-\{4-[(butoxyphenoxy)carbonyl] phenyl 4-[(2-ethylacyloyloxy)hexyloxy]benzoate\} (8b)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (8a).

Yield: 68%, $\mathrm{FT}-\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3079$ (aromatic $\left.\mathrm{C}-\mathrm{H}_{\text {str }}\right), 2924,2854\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 1732\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1604$ and $1509\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1469\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1194$ and 1162 (C-O-C asym \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR} \operatorname{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 8.17(\mathrm{~d}, 2 \mathrm{H}), 8.07(\mathrm{~d}, 2 \mathrm{H}), 7.26(\mathrm{~d}, 2 \mathrm{H}), 7.04(\mathrm{~d}, 2 \mathrm{H}), 6.88$ $(\mathrm{d}, 4 \mathrm{H}), 3.96(\mathrm{t}, 6 \mathrm{H}), 1.77(\mathrm{~m}, 8 \mathrm{H}), 1.48(\mathrm{~m}, 6 \mathrm{H}), 0.96(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 177.56$, $176.91,164.78,164.19,163.61,157.02,155.17,144.18,132.47$, 131.75, 127.17, 122.45, 122.05, $121.28,115.12,114.39,68.15,65.08,45.20,44.98,31.41,29.16,28.21,26.06,25.88,19.33$ and 14.95.

Poly-\{4-[(hexyloxyphenoxy)carbonyl]phenyl4-[(2-methylacyloyloxy)hexyloxy] benzoate\} (8c)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (8a).

Yield: 63%, FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 2933, $2861\left(\mathrm{C}-\mathrm{H}_{\text {str }}\right), 1732\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1603$ and $1508\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic), $1470\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1252,1193$ and 1163 (C-O-C asym \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-$ NMR ppm $\left(\mathrm{CDCl}_{3}\right): \delta 8.14(\mathrm{~d}, 2 \mathrm{H}), 8.05(\mathrm{~d}, 2 \mathrm{H}), 7.25(\mathrm{~d}, 2 \mathrm{H}), 7.04(\mathrm{~d}, 2 \mathrm{H}), 6.86(\mathrm{~d}, 4 \mathrm{H}), 3.95(\mathrm{t}$, $6 \mathrm{H}), 1.75(\mathrm{~m}, 6 \mathrm{H}), 1.64(\mathrm{~m}, 4 \mathrm{H}), 1.49(\mathrm{~m}, 6 \mathrm{H}), 1.31(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \operatorname{ppm}\left(\mathrm{CDCl}_{3}\right): \delta$ $164.78,164.19,163.60,157.01,155.16,144.15,142.47,131.75,127.14,122.43,122.05,121.26$, $115.10,114.39,68.46,68.19,44.94,44.89,31.69,29.34,29.15,26.06,25.88,25.81,22.70$ and 14.15.

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (8a).

Yield: 60%, FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3074$ (aromatic C-H ${ }_{\text {str }}$), 2929, $2858\left(\mathrm{C}_{-\mathrm{H}_{\text {str }}}\right), 1733\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1604$ and $1508\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1470\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1194$ and $1161\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {asym }}\right.$ \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right): \delta 8.15$ (d, 2H), 8.05 (d, 2 H$), 7.25(\mathrm{~d}, 2 \mathrm{H}), 7.04$ (d, 2H), 6.86 (d, 4H), $3.95(\mathrm{t}, 6 \mathrm{H}), 1.75(\mathrm{~m}, 6 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~m}, 6 \mathrm{H}), 1.29(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ppm $\left(\mathrm{CDCl}_{3}\right): \delta 177.54,176.92,164.67,164.08,163.49,156.89,155.03,144.04,132.35$, $131.63,127.04,122.33,121.94,121.15,114.98,114.27,68.35,68.07,64.86,45.17,44.83,31.82$, 29.38, 29.27, 29.25, 29.05 28.10, 26.03, 25.95, 25.77, 22.66 and 14.95.

Poly-\{4-[(decyloxyphenoxy)carbonyl]phenyl4-[(2-methylacyloyloxy)hexyloxy] benzoate\} (8e)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (8a).
 and $1508\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1469\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1193$ and $1161\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {asym }}\right.$ \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR} \operatorname{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 8.16(\mathrm{~d}, 2 \mathrm{H}), 8.06(\mathrm{~d}, 2 \mathrm{H}), 7.25(\mathrm{~d}, 2 \mathrm{H}), 7.04(\mathrm{~d}, 2 \mathrm{H}), 6.87$ $(\mathrm{d}, 4 \mathrm{H}), 3.96(\mathrm{t}, 6 \mathrm{H}), 1.77(\mathrm{~m}, 8 \mathrm{H}), 1.44(\mathrm{~m}, 6 \mathrm{H}), 1.27(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right): \delta 164.79,164.20,163.60,157.01,155.14,144.15,132.47,131.75,127.15,122.45,122.05$, $121.25,115.09,114.37,68.46,68.18,65.04,44.97,44.92,31.01,29.70,29.55,29.44,29.40,29.17$, 26.15, 26.07, 25.89, 22.80 and 14.25.

Poly-\{4-[(dodecyloxyphenoxy)carbonyl] phenyl 4-[(2methylacyloyloxy)hexyloxy] benzoate\} (8f)
The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (8a).

Yield: 62%, FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3074$ (aromatic C- $\mathrm{H}_{\text {str }}$), 2924, $2853\left(\mathrm{C}_{-\mathrm{H}_{\text {str }}}\right), 1733\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1604$ and $1508\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1470\left(-\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1193$ and $1162\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {asym }}\right.$ \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR} \operatorname{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 8.16(\mathrm{~d}, 2 \mathrm{H}), 8.07(\mathrm{~d}, 2 \mathrm{H}), 7.25(\mathrm{~d}, 2 \mathrm{H}), 7.05(\mathrm{~d}, 2 \mathrm{H}), 6.90$
$(\mathrm{d}, 4 \mathrm{H}), 3.94(\mathrm{t}, 6 \mathrm{H}), 1.77(\mathrm{~m}, 8 \mathrm{H}), 1.44(\mathrm{~m}, 6 \mathrm{H}), 1.27(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right): \delta 164.80,164.39,163.64,157.02,155.18,144.20,132.53,131.84,127.15,122.46,122.12$, $121.25,115.17,114.44,68.49,68.20,64.95,44.19,44.80,32.03,29.78,29.76,29.71,29.53,29.48$, $29.39,29.16,26.15,25.89,25.83,22.81$ and 14.26.

Synthesis of 4-[(4-hexyloxyphenoxy) carbonyl] phenyl 4-hexyloxybenzoate (9a)

In a typical experiment, $15.7 \mathrm{~g}(50 \mathrm{mmol})$ 4-hexyloxyphenyl 4-hydroxybenzoate (3c) and $8.67 \mathrm{~g}(85 \mathrm{mmol})$ of triethylamine were dissolved in 100 ml MEK. To this, a 50 ml MEK solution containing $11.1 \mathrm{~g}(50 \mathrm{mmol})$ 4-hexyloxybenzoylchloride (prepared from 4-hexyloxy benzoic acid and thionyl chloride) was added drop wise at $0{ }^{\circ} \mathrm{C}$. Then the reaction mixture was stirred for 3 h at room temperature and then the triethylamine salt thus formed was filtered off and solvent was evaporated. The solid obtained was purified by recrystallization from isopropanol to yield a white solid.

Yield: 73\% m.p-95 ${ }^{\circ} \mathrm{C}$, FT-IR (KBr, cm ${ }^{-1}$): 3076 (aromatic C- $\mathrm{H}_{\text {str }}$), 2930, 2860 ($\mathrm{C}-\mathrm{H}_{\text {str }}$), 1739 $\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1605$ and $1512\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic), $1469\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1275,1194$ and $1166\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {asym }}\right.$ \& sym str of ester and ether respectively); ${ }^{1} \mathrm{H}-\mathrm{NMR} \operatorname{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 8.27(\mathrm{~d}, 2 \mathrm{H}), 8.16(\mathrm{~d}, 2 \mathrm{H}), 7.36(\mathrm{~d}, 2 \mathrm{H})$, $7.13(\mathrm{~d}, 2 \mathrm{H}), 6.99(\mathrm{~d}, 2 \mathrm{H}), 6.94(\mathrm{~d}, 2 \mathrm{H}), 4.05(\mathrm{t}, 2 \mathrm{H}), 3.96(\mathrm{t}, 2 \mathrm{H}), 1.81(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~m}, 4 \mathrm{H}), 1.35$ $(\mathrm{m}, 8 \mathrm{H})$ and $0.93(\mathrm{t}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 164.87,164.35,163.81,156.94,155.27,144.18$, $132.41,131.74,127.03,122.36,122.05,120.09,115.11,114.41,68.42,68.38,31.59,31.54,29.24$, 29.05, 25.72 25.65, 22.61, 22.59 and 14.05. EI-MS: m/z $518.78\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{6}$: C 74.31, H 7.26 Found: C 74.52 and H 7.13%.

4-[(4-dodecyloxyphenoxy) carbonyl] phenyl 4-hexyloxybenzoate (9b)

The procedure adopted for the synthesis of this compound was identical to that adopted for Compound (9a)

Yield: 70% m.p-100 ${ }^{\circ} \mathrm{C}$, FT-IR (KBr, cm ${ }^{-1}$): 3076 (aromatic C-H $\mathrm{H}_{\text {str }}$), 2918, $2852\left(\mathrm{C}^{\left.-\mathrm{H}_{\text {str }}\right), 1737}\right.$ $\left(\mathrm{C}=\mathrm{O}_{\text {str }}\right), 1606$ and $1510\left(\mathrm{C}=\mathrm{C}_{\text {str }}\right.$ aromatic $), 1470\left(\mathrm{C}-\mathrm{H}_{\text {ben }}\right), 1277,12471196$ and $1166\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\text {asym \& }}\right.$ sym str of ester and ether respectively) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ppm $\left(\mathrm{CDCl}_{3}\right): \delta 8.27(\mathrm{~d}, 2 \mathrm{H}), 8.15(\mathrm{~d}, 2 \mathrm{H}), 7.36(\mathrm{~d}$, $2 \mathrm{H}), 7.12(\mathrm{~d}, 2 \mathrm{H}), 6.99(\mathrm{~d}, 2 \mathrm{H}), 6.93(\mathrm{~d}, 2 \mathrm{H}), 4.06(\mathrm{t}, 2 \mathrm{H}), 3.97(\mathrm{t}, 2 \mathrm{H}), 1.81(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~m}, 4 \mathrm{H})$, $1.34(\mathrm{~m}, 20 \mathrm{H})$ and $0.89(\mathrm{t}, 3 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR} \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right): \delta 164.85,164.33,163.82$, 156.94, 155.28, 144.19, 132.41, 131.74, 127.04, 122.36, 122.05, 120.96, 115.10, 114.41, 68.42, $68.38,31.94,31.56,29.68,29.66,29.62$ 29.42, 29.37, 29.29, 29.06, 26.05, 25.66, 22.71, 22.61, 14.14 and 14.04. EI-MS: $m / z 602.89\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{O}_{6}$: C 75.71, H 8.36 Found: C 75.56 and H 8.19 \%.

References

1. G. Buchi, S. M. Weinreb, J. Am. Chem. Soc., 1971, 93, 746.
2. W. Greene, Protecting Groups in Organic Synthesis, John Wiely \& Sons. New York, 1999.
3. M. P. Denieul, B. Laursen, R. Hazell, T. Skrdstrup, J. Org. Chem., 2000, 65, 6052.

Table 1 HOPM and DSC data of model mesogens

Sample Code	Transitions observed by DSC	Transition temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\Delta \mathrm{H}$ (kJ/mole)	Phases observed by HOPM
9a (Heating)	$\mathrm{Cr}-\mathrm{S}_{\mathrm{C}}$	92.0	23.07	Smectic C
	$\mathrm{S}_{\mathrm{C}}-\mathrm{S}_{\text {A }}$	115.1	0.008	Smectic A
	$\mathrm{S}_{\mathrm{A}}-\mathrm{N}$	116.4	0.006	Nematic
	N-I	209.6	1.45	Isotropic
9a (Cooling)	I-N	208.8	1.30	Nematic
	$\mathrm{N}-\mathrm{S}_{\text {A }}$	119.7	0.011	Smectic A
	$\mathrm{S}_{\mathrm{A}}-\mathrm{S}_{\mathrm{C}}$	115.3	0.006	Smectic C
	$\mathrm{S}_{\mathrm{C}}-\mathrm{Cr}$	64.2	19.6	Crystallization
9b (Heating)	$\mathrm{Cr}-\mathrm{S}_{\mathrm{C}}$	99.58	41.95	Smectic C
	$\mathrm{S}_{\mathrm{C}}-\mathrm{S}_{\text {A }}$	126.0	0.004	Smectic A
	$\mathrm{S}_{\mathrm{A}}-\mathrm{N}$	166.1	0.15	Nematic
	N-I	183.4	0.68	Isotropic
9b (Cooling)	I-N	182.5	0.655	Nematic
	$\mathrm{N}-\mathrm{S}_{\text {A }}$	165.6	0.233	Smectic A
	$\mathrm{S}_{\mathrm{A}}-\mathrm{S}_{\mathrm{C}}$	126.1	0.002	Smectic C
	$\mathrm{S}_{\mathrm{C}}-\mathrm{Cr}$	76.3	41.290	Crystallization

