Supplementary Information for:

Regioselective β-Pyrrolic Electrophilic Substitution of Hydrodipyrrin–Dialkylboron Complexes Facilitates Access to Synthetic Models for Chlorophyll *f*

Mengran Liu, Marcin Ptaszek, Olga Mass, Daniel Minkler, Roger D. Sommer, Jayeeta Bhaumik and Jonathan S. Lindsey

Table of Contents

	Торіс	Page
1.	NMR Characterization of Dibutylboron Formyltetrahydrodipyrrins	S 1
2.	X-ray Data	S2-S3
3.	Decomplexation Results	S4
4.	Spectral Data	S4-S43

1. NMR Characterization of Dibutylboron Formyltetrahydrodipyrrins.

The resonances observed for protons in dibutylboron formyltetrahydrodipyrrins 1- F^7BBu_2 , $1-F^8BBu_2$ and $1-F^9BBu_2$ were assigned (Table S1). In $1-F^9BBu_2$ the formyl proton exhibited two cross peaks with a butyl group and H^8 . In $1-F^8BBu_2$ the formyl proton has two NOE with H^9 and H^7 . And in $1-F^7BBu_2$ the formyl proton has two cross peaks with H^8 and a methine proton. The observed NOE of the pyrrolic protons in formyltetrahydrodipyrrin–dibutylboron complexes also strongly supported the assigned structures (Figure S1).

Table S1. ¹H NMR chemical shifts of dibutylboron formyltetrahydrodipyrrins.

Compound	H-formyl	H^{7}	H^{8}	H ⁹
$1-F^7BBu_2$	9.77	—	6.55	6.62
1-F ⁸ BBu ₂	9.68	6.37	_	7.29
1-F ⁹ BBu ₂	9.81	6.02	7.14	_

Figure S1. NOEs observed with tetrahydrodipyrrin–dialkylboron complexes.

The position of the formyl group in $1-F^7BBu_2$ was established by ¹H NMR spectroscopy with observation of the following NOE signals: (1) the NOE signal between the formyl proton and one of the methylene group protons (note the chemical shift change of one of the methylene group protons is pronounced upon formylation, from 2.82–2.85 ppm to 3.57–3.63 ppm); (2) the NOE signal between the formyl proton and the β -pyrrolic proton; (3) the NOE signal between the α -pyrrolic proton and the butyl group; and (4) the NOE signal between the α - and β -pyrrolic protons.

2. X-ray Data.

Table S2. Summary of Crystal Data for 1-BBu ₂ , 1-Br ⁸ BBu ₂ , 2-BBu ₂ , and 1-Br ⁸ F ⁷ BBu ₂ .							
	1-BBu ₂	1-Br ⁸ BBu ₂	2-BBu ₂	1-Br ⁸ F ⁷ BBu ₂			
CCDC registry	974409	974410	974412	974411			
Formula	$C_{20}H_{35}BN_2$	$C_{20}H_{34}BBrN_2$	$C_{27}H_{39}BN_2$	C ₂₁ H ₃₄ BBrN ₂ O			
Formula Weight (g/mol)	314.32	393.21	402.41	421.22			
Crystal Dimensions (<i>mm</i>)	$\begin{array}{c} 0.32 \times 0.20 \\ \times \ 0.09 \end{array}$	0.45 × 0.30 × 0.20	0.36 × 0.26 × 0.08	0.50 imes 0.37 imes 0.09			
Crystal System	monoclinic	monoclinic	monoclinic	orthorhombic			
Space Group	$P2_{1}/n$	$P2_{1}/c$	$P2_{1}/c$	$Pna2_1$			
Temperature, K	110	110	173	110			
a, Å	15.8194(3)	8.8715(3)	9.077(2)	17.5208(3)			
b, Å	7.93900(10)	26.3874(12)	16.466(6)	16.5255(3)			
<i>c</i> , Å	16.6596(3)	9.8079(4)	18.163(6)	15.1765(3)			
α , deg	90	90	90	90			
β, deg	110.7227(8)	115.588(2)	109.714(8)	90			
v. deg	90	90	90	90			
V. Å3	1956.92(6)	2070.80(15)	2555.6(14)	4394.20(14)			
Number of reflections to determine final unit cell	9052	503	8126	9969			
Min and Max 20 for cell determination (deg)	4.4, 44.38	4.85, 51.95	4.76, 42.28	5.26, 62.01			
Ζ	4	4	4	8			
F(000)	696.32	832	880	1776			
ρ (<i>g/cm</i>)	1.067	1.261	1.046	1.273			
λ, Å, (MoKα)	0.71073	0.71073	0.71073	0.71073			
μ , (cm ⁻¹)	0.06	1.989	0.06	1.883			
Max 20 for data collection (deg)	53.32	56.56	52.82	54.64			
Measured fraction of data	0.999	0.999	0.999	0.999			
Number of reflections measured	110726	29325	54612	77149			
Unique reflections measured	4114	5130	5249	9523			
R _{merge}	0.031	0.0377	0.0461	0.0377			
Number of parameters in least-squares	349	222	277	500			
\mathbf{R}_1	0.052	0.0643	0.0696	0.0456			
wR ₂	0.079	0.1295	0.191	0.1098			
R_1 (all data)	0.074	0.0771	0.1097	0.0497			
wR_2 (all data)	0.157	0.1343	0.222	0.1119			

Table S2. Summary of Crystal Data for 1-BBu₂, 1-Br⁸BBu₂, 2-BBu₂, and 1-Br⁸F⁷BBu₂.

Compound **1-Br**⁸**F**⁷**BBu**₂ crystallizes in the chiral space group. The absolute structure parameter for **1-Br**⁸**F**⁷**BBu**₂ was refined using TWIN/BASF commands to accommodate for a small amount of racemic twinning. Electron density peaks in the difference map of **1-Br**⁸**F**⁷**BBu**₂ revealed disorder in the position of the bromine atom (Br1, Br1A; Br2, Br2A) on both of the molecules in the asymmetric unit (at the respective positions C8, C9 and C29, C30). The two enantiomers of **1-Br**⁸**F**⁷**BBu**₂ are displayed in Figure S2. In addition, the two ball-and-stick models show the composite electron density for the presence of **1-Br**⁸**F**⁷**BBu**₂ and **1-Br**⁹**F**⁷**BBu**₂ in 97:3 ratio.

Figure S2. Enantiomers of 1-Br⁸F⁷BBu₂ also showing the disorder of the bromo position.

3. Decomplexation Results

Entry	Reagent	eagent Solvent Temp., Time		Result ^a
1	Propylamine	Propylamine	Reflux, 1 h	1-BBu ₂ (intact), 1 (none)
2	Glycine	THF/MeOH, 1:1	Reflux, 1 h	1-BBu ₂ (major), 1 (minor)
3	DTT, Pyridine	THF	Reflux, 1 h	1-BBu₂ (none), 1 (none), extensive byproducts
4^b	TFA, 450 mM	CH ₂ Cl ₂	RT, 10 min	1 (~50%), unknown (~50%)
5 ^{<i>b</i>}	Pentanol	Pentanol	Reflux, 2 h	1-BBu ₂ (trace), 1 (~quant.)
6	PhOH, K ₂ CO ₃	CH ₃ CN	Reflux, 2 h	1-BBu ₂ (trace), 1 (~quant.)
7	N_2H_4 · H_2O	THF	Reflux, 1 h	1-BBu ₂ (none), 1 (~quant.)
8	KOH (excess)	THF/MeOH, 1:1	Reflux, 1 h	1-BBu ₂ (none), 1 (~quant.)

Table S3. Conditions for decomplexation of 1-BR₂.

^{*a*}The product distribution was estimated on the basis of TLC analysis with visual inspection. ^{*b*}Application of the same conditions to $1-BMe_2$ afforded the corresponding product distribution.

4. Spectral Data.

S7

O″

ż

T

ש

S34

				*********				:===
Spectrum/Peak Report	Date	10/17/2013	Time	12:51:18	Page	1	of	1
	=====					===	===	===

Method file	:	<untitled></untitled>
Information	:	Default Method
Data File	:	C:\Chem32\1\DATA\Mengran Liu\070513_2BRFBC_TOLUENE_2.SD Created : 7/5/13 10:34:20

			=====	====			======	====		====
Spectrum/Peak Report	Date	e 10)/17/2	013	Time	12:51:54	1 Page	1	of	1
							======		===:	

Method file	:	<untitled></untitled>
Information	•	Default Method
Data File	:	C:\Chem32\1\DATA\Mengran Liu\070513_3BRFBC_TOLUENE_2.SD Created
		: 7/5/13 10:41:19

