Electronic Supplementary Information

Supramolecular Luminescent Hydrogels Based on β-Amino Acid and Lanthanide Ions Obtained by Self-Assembled Hydrothermal Reactions

Fausthon Fred da Silva^a, Fernanda Lira de Menezes^a, Leonis Lourenço da Luz^a, Severino Alves

Jr

Experimental Section

Preparation of the hydrogels: The G-Eu 97893332 was obtained by mixing 0.15 mmol of Eu_2O_3 and a solution 0.9 mmol/L of iminodiacetic acid with pH =5 (by addition of NaOH) in a beaker with magnetic stirring for 20 minutes. The suspension was transferred to a Teflon-lined recipient, sealed in a metallic reactor, heated to 120°C for six days, and then cooled to room temperature. The same procedure was used to obtain the G-Gd and G-Tb hydrogels, exceptGd₂O₃ and Tb₂O₃, respectively, replaced the europium oxide. The lanthanide-mixed gel (G-Tb_{0.5}Eu_{0.5}) was obtained using the same procedure, but started from 0.075 mmol of each lanthanide oxide.

Physical measurements: The SEM images and EDS spectra of the solid samples were obtained using a Shimadzu SS550 microscope with a tungsten filament. The IR spectra were performed in a Bruker FT-IR model IFS66 spectrometer. The thermogravimetric analyses were obtained under N_2 atmosphere in a Shimadzu TGA 60-H. The luminescence analysis was carried out in a modular spectrofluorometer Horiba Jobin-Yvon Fluorolog-3 with double excitation using a 450 W xenon lamp.

	Carbon (%)	Hydrogen (%)	Nitrogen (%)
[EuNa(HIDA) ₂ (OH) ₂ (H ₂ O) ₂]	19.28	3.62	5.62
Experimental	20.06	4.45	5.69
[TbNa(HIDA) ₂ (OH) ₂ (H ₂ O) ₂]	19.01	3.56	5.54
Experimental	19.82	4.45	5.68
[GdNa(HIDA) ₂ (OH) ₂ (H ₂ O) ₂]	19.08	3.58	5.56
Experimental	19.28	4.17	5.49

Table S1.Elemental analysis of the dried samples

Table S2. Experimental intensity parameters, decay rates, lifetime, and quantumefficiency of the G-Eu gel

Ω_2	Ω_4	A_{RAD} (s ⁻¹)	A _{NRAD}	τ	ן
(x10 ⁻²⁰ cm ²)	(x10 ⁻²⁰ cm ²)		(s ⁻¹)	(ms)	(%)
5.25	4.97	322	3126	0.29	9.3

Figure S1. EDS spectra of dried G-Eu.

Figure S2. EDS spectra of dried G-Tb.

Figure S3. EDS spectra of dried G-Gd.

Figure S6. Emission spectra of the G-Eu (black), dried sample (red), and rehydrated gel (blue).

Figure S8. The CIE chromaticity diagram: (1) λ_{exc} = 326 nm; (2) λ_{exc} = 338nm; (3) λ_{exc} = 381nm; (4) λ_{exc} = 395 nm; and corresponding points on the CIE chromaticity diagram.

Figure S9. Excitation spectrum of the G-Tb_{0.5}Eu_{0.5} gel monitored at 616 nm.

