Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supporting Information

Morphology controlled synthesis of large mordenite crystals

Yaming Mao, Yu Zhou, Haimeng Wen, Jingyan Xie, Wei Zhang, Jun Wang*

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing, 210009, Jiangsu, China. *Corresponding author, Tel: +86-25-83172264, Fax: +86-25-83172261, E-mail: junwang@njtech.edu.cn

Figure S1 SEM images of the internal structure of the MOR microsphere aggregates obtained with the crystallization time of 4 d and crystallization temperature of 443 K by using the gel composition of $15SiO_2/8Na_2O/900H_2O/3.5TEAOH/1Al_2O_3$.

Figure S2 XRD pattern of as-calcined MOR sample obtained by base-hydrolysis of TEOS.

Figure S3 SEM image of the as-calcined MOR sample obtained by base-hydrolysis of TEOS.

Figure S4 XRD pattern of as-calcined sample obtained with the crystallization time of 4 d and crystallization temperature of 443 K by using the gel composition of 15SiO₂/9Na₂O/ 900H₂O/3.5TEAOH/1Al₂O₃.

Figure S5 SEM image of as-calcined sample obtained with the crystallization time of 4 d and crystallization temperature of 443 K by using the gel composition of 15SiO₂/9Na₂O/900H₂O/3.5TEAOH/1Al₂O₃.

Figure S6 XRD pattern of the as-calcined sample obtained with the crystallization time of 9 d and crystallization temperature of 443 K with the gel composition of $15SiO_2/8Na_2O/900H_2O/3.5TEAOH/1Al_2O_3$.

Figure S7 SEM image of the as-calcined sample obtained with the crystallization time of 9 d and crystallization temperature of 443 K with the gel composition of 15SiO₂/8.0Na₂O/900H₂O/3.5TEAOH/1Al₂O₃.

Figure S8 N_2 sorption isotherms of selected as-calcined samples synthesized with TEAOH (a: Entry 1 and b: Entry 8) and all the as-calcined samples synthesized without using TEAOH (c: Entry 12; d: Entry 13; e: Entry 14; f: Entry 15; g: Entry 16). The adsorption isotherms for samples a, b, c, d, e, f and g are shifted by 18, 10, 29, 11, 0, - 10 and -21 cm³ g⁻¹. The filled circles indicate adsorption and the hollow circles indicate desorption.

Sample	Surface area $(m^2 g^{-1})$	Pore volume (cm ³ g ⁻¹)
a: Entry 1	405	0.21
b: Entry 8	387	0.20
c: Entry 12	338	0.18
d: Entry 13	267	0.15
e: Entry 14	258	0.15
f: Entry 15	248	0.14
g: Entry 16	232	0.12

Table S1 Surface area and pore volume of the as-calcined samples in Figure S8.