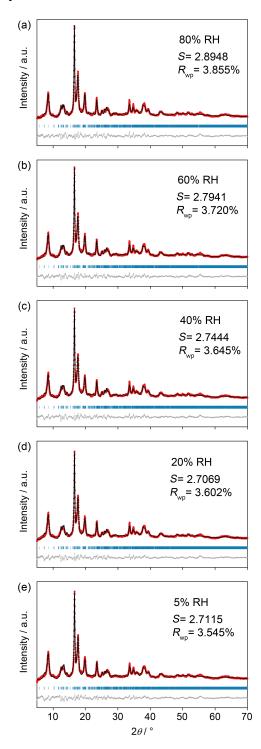
Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supplementary Information

Humidity dependency of the thermal phase transition of a cyano-bridged Co-W bimetal assembly

Noriaki Ozaki,^a Hiroko Tokoro,^{a,b} Yasuto Miyamoto,^a and Shin-ichi Ohkoshi^{a,c*}


^aDepartment of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan ^bNEXT, JSPS, 8-Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan ^cCREST, JST, K's Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan

> * To whom correspondence should be addressed. ohkoshi@chem.s.u-tokyo.ac.jp (S. Ohkoshi) Tel: +81-3-5841-4331 Fax: +81-3-3812-1896

Contents:

- §1 The results of Rietveld analyses and the atomic coordinates
- §2 Humidity dependence of the transition temperatures and thermal hysteresis
- §3 DSC measurement
- §4 Spin entropy change due to a phase transition

§1. The results of Rietveld analyses and the atomic coordinates

Fig. S1 XRD patterns and Rietveld analyses of $Co_3[W(CN)_8]_2(4$ -methylpyridine)_2(pyrimidine)_2xH_2O for (a) 80% RH, (b) 60% RH, (c) 40% RH, (d) 20% RH, and (e) 5% RH. Black points, red lines, blue bars, and gray points indicate the observed patterns, calculated patterns, Bragg peak positions, and residual curves, respectively.

Atom	x	у	Z	Atom	x	у	Z
Col	0.55	0.90	0.74	C31	0.48	0.58	0.88
Co2	0.54	0.42	0.78	C32	0.65	0.62	0.99
Co3	0.50	0.50	0.50	C33	0.78	0.56	0.98
Co4	0.00	0.00	0.00	C34	0.76	0.50	0.92
W1	0.03	0.15	0.74	C35	0.50	0.63	0.94
W2	0.98	0.65	0.69	C36	0.67	0.67	0.05
C1	0.89	0.29	0.77	N1	0.81	0.35	0.79
C2	0.91	0.02	0.75	N2	0.84	0.96	0.75
C3	0.09	0.08	0.85	N3	0.09	1.04	0.90
C4	0.28	0.06	0.77	N4	0.40	0.01	0.78
C5	0.27	0.14	0.83	N5	0.41	0.12	0.86
C6	0.91	0.16	0.66	N6	0.86	0.17	0.61
C7	0.09	0.25	0.84	N7	0.12	0.31	0.88
C8	0.24	0.27	0.79	N8	0.36	0.32	0.81
C9	0.15	0.78	0.71	N9	0.25	0.84	0.73
C10	0.20	0.55	0.74	N10	0.31	0.50	0.75
C11	0.73	0.61	0.63	N11	0.62	0.59	0.58
C12	0.12	0.65	0.81	N12	0.17	0.66	0.86
C13	0.14	0.52	0.66	N13	0.24	0.47	0.64
C14	0.79	0.57	0.73	N14	0.70	0.54	0.75
C15	0.82	0.77	0.63	N15	0.73	0.83	0.61
C16	0.78	0.75	0.71	N16	0.66	0.79	0.71
C17	0.51	0.80	0.86	N17	0.76	0.91	0.94
C18	0.70	0.93	0.87	N18	0.62	0.87	0.83
C19	0.55	0.78	0.93	N19	0.51	0.39	0.58
C20	0.68	0.83	0.97	N20	0.53	0.36	0.69
C21	0.54	0.28	0.67	N21	0.49	0.95	0.65
C22	0.52	0.42	0.64	N22	0.58	0.51	0.88
C23	0.54	0.25	0.61	01	0.58	0.05	0.95
C24	0.53	0.31	0.56	O2	0.90	0.26	0.51
C25	0.53	0.05	0.64	O3	0.34	0.69	0.97
C26	0.42	0.05	0.54	O4	0.78	0.70	0.45
C27	0.36	0.95	0.54	05	0.10	0.93	0.55
C28	0.40	0.91	0.60	O6	0.99	0.39	0.97
C29	0.50	0.09	0.59	07	0.15	0.87	1.00
C30	0.39	0.10	0.47	08	0.78	0.45	0.47

Table S1. Atomic coordinates of Co₃[W(CN)₈]₂(4-methylpyridine)₂(pyrimidine)₂xH₂O

* The atomic coordinates are the same for all humidities.

§2. Phase transition temperatures

	100% RH	80% RH	60% RH	40% RH	20% RH	5% RH
$T_{1/2\downarrow}$ / K	147	152	157	168	174	191
$T_{1/2\uparrow}$ / K	242	239	236	236	239	245
$T_{\rm p}/{ m K}$	195	196	197	202	207	218
$\Delta T / \mathrm{K}$	95	87	79	68	65	54

Table S2 Humidity dependence of the transition temperatures and thermal hysteresis

§3. DSC measurements

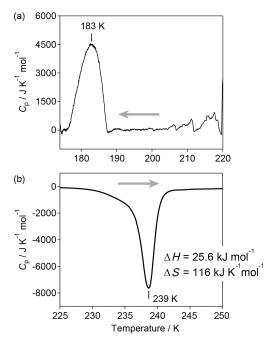


Fig. S2 The DSC charts of $Co_3[W(CN)_8]_2(4$ -methylpyridine)_2(pyrimidine)_2 xH_2O in (a) cooling and (b) warming processes.

§4. Spin entropy change due to a phase transition

The change in the spin entropy (ΔS_{spin}) is calculated from the orbital degeneracy and the spin multiplicity. In the present complex, Co has an octahedral (D_{4h}) symmetry. The electronic states of Co^{II} and Co^{III} are ${}^{4}E_{g}$ and ${}^{1}A_{1g}$, respectively. On the other hand, W has a dodecahedron ($C_{2\nu}$) symmetry, and the electronic states of W^V and W^{IV} are ${}^{2}B_{1}$ and ${}^{1}A_{1}$, respectively. Therefore, the electronic states are:

HT phase: $3D_{4h}Co^{II}({}^{4}E_{g})-2C_{2\nu}W^{\nu}({}^{2}B_{1})$ LT phase: $2D_{4h}Co^{III}({}^{4}A_{1g})-D_{4h}Co^{II}({}^{4}E_{g})-2C_{2\nu}W^{I\nu}({}^{1}A_{1})$

The degeneracy of each phase is expressed by the product of the orbital degeneracy and the spin multiplicity. D_{4h} Co^{III}(${}^{1}A_{1g}$) is 1×1 , $C_{2\nu}W^{IV}({}^{1}A_{1})$ is 1×1 , D_{4h} Co^{II}(${}^{4}E_{g}$) is 2×4 , and $C_{2\nu}W^{V}({}^{2}B_{1})$ is 1×2 . Therefore, the degeneracies are:

HT phase:
$$(2 \times 4)^3 \times (1 \times 2)^2 = 2048$$

LT phase: $(1 \times 1)^2 \times (2 \times 4)^1 \times (1 \times 1)^2 = 8$

Thus, the spin entropy of the HT and LT phases are $S_{\text{spin, LT}} = R \ln 8$, $S_{\text{spin, HT}} = R \ln 2048$, respectively. Taking the difference of these values, ΔS_{spin} is

$$\Delta S_{\text{spin}} = S_{\text{spin}, \text{HT}} - S_{\text{spin}, \text{LT}}$$

= Rln2048 - Rln8
= Rln256
= 46 J K⁻¹ mol⁻¹

This value is constant unless the orbital degeneracy and spin multiplicity change. In the present compound, these values are not affected by humidity.