Electronic Supplementary Information Organogels from unsymmetrical π -conjugated 1,3,4-oxadiazole derivatives

Chengxiao Zhao, Haitao Wang, Binglian Bai, Songnan Qu, Yan Zhang

and Min Li*

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Institute of Materials Science and Engineering, Jilin University, Changchun 130012, PR China

	Solvents	4-POXD-B8	4-PO	XD-B12	
Aromatic	Benzene	S	S		
	Toluene	S	S		
	Chlorobenzene	S	S		
	Nitrobenzene	S	S		
Chlorinated	Chloroform	S	S		
	Dichloromethane	S	S		
	1,2-dichloroethane	S	S		
Alkanes	Cyclohexane	S	S		
	n-heptane	Р	Р		
esters	Ethyl acetate	S	S		
	Methyl acetate	S	S		
ethers	Tetrahydrofuran	S	S		
	Diethyl ether	S	S		
ketones	Acetone	Р	Р		
	2- butanone	S	S		
Alcohols	Glycol	Ι	Ι		
^a P = precipitatio	on; S = solution.				
Table S2. Differ	ent solvent parameter	rs.			
Class of solvent Solvents		δ_a (cal cm-3)1/2		$E_{\rm T}(30)^{[1]}$	ε
				(kcal mol-1)	
Aromatic	Benzene	1		34.5	2.27
	Toluene	1.22		33.9	2.379
	Chlorobenzene	2.33		38.1	5.6
	Nitrobenzene	4.65		42	34.8
Chlorinated	Chloroform	3.18		39.1	4.806
	Dichloromethane	4.31		38.1	9.08
	1,2-dichloroethane	4.12		41.3	10.37
Alkanes	Cyclohexane	0.1		31.2	2.1
esters	Ethyl acetate	4.36		38.1	
	Methyl acetate	4.36		40.0	
ethers	Tetrahydrofuran	4.8		37.4	
	Diethyl ether	2.87		34.6	4.335

Tabel S1. Gelation properties of 4-POXD-Bn (n= 8, 12) in different solvents.^a

ketones	Acetone	6.13	42.2	
alcohols	Glycol	13.8	56.3	41.4
	Methanol	12.44	55.4	33.62
	Ethanol	10.43	51.6	25.07
	n-propanol	9.12	50.7	20.8
_	n-butanol	8.19	50.2	17.84
Others	Acetonitrile	9.3	45.6	38.8
	Dimethylformanide	8,67	43.8	37.6
	Dimethylsulfoxide	9.43	45.1	48.9

Table S2	Cibba	anaraiaa	f col	votion	ofh	avona in	nomiona	columnta	at 2001	· :	1-1/m	1
Table 55.	Glubbs	energies	JI SOI	vation	01 10	exame m	various	sorvenus	al 290M	L III	KJ/11	101

Class of solvent	Solvents	Gibbs energies (ΔG_{solv})
Aromatic	Benzene	-1.2
	Toluene	-2.6
	Chlorobenzene	-2.0
	Nitrobenzene	0.4
Chlorinated	Chloroform	-2.2
	Dichloromethane	
	1,2-dichloroethane	0.1
Alkanes	Cyclohexane	-3.5
esters	Ethyl acetate	-0.8
	Methyl acetate	
ethers	Tetrahydrofuran	-2.1
	Diethyl ether	
ketones	Acetone	0.9
alcohols	Glycol	11.9
	Methanol	4.2
	Ethanol	2.2
	n-propanol	1.4
	n-butanol	0.0
Others	Acetonitrile	4.1
	Dimethylformanide	3.2
	Dimethylsulfoxide	7.3

Fig. S1. Gel images of 4-POXD-B8 in various solvents.

13

Fig. S4. Effect of the polar solubility parameter δ_a on GN of gelator 4-POXD-Bn. (a) "other" solvents, (b) alcohol solvents.

Fig. S5. SEM images of 4-POXD-B8 on Si underlay after solvent had evaporated from 1.8×10^{-4} mol/L DMSO solutions of the compound drop cast on the surface. (Solvent evaporated at room-temperature)

Fig S6. SEM images of 4-POXD-B8 on Si underlay after solvent had evaporated from (a) $1.8 \times 10-4$ mol/L, (b) $5.3 \times 10-4$ mol/L, and (c) $1.0 \times 10-3$ mol/L DMSO solutions of the compound drop cast on the surface. (Solvent evaporated at room-temperature)

Fig. S7. SEM images of 4-POXD-B8 on Si underlay after solvent had evaporated from (a), (b) 1.1 $\times 10^{-4}$ mol/L and (c) 2.3×10^{-4} mol/L DMF solutions of the compound drop cast on the surface. (Solvent evaporated at room-temperature)

Fig. S8. SEM images of 4-POXD-B12 xerogels from (a) DMSO, (b) acetonitrile, and (c) DMF.

Fig. S9. X-Ray diffraction (XRD) spectra of 4-POXD-B8 xerogels from DMF and ethanol.

Fig. S10. X-Ray diffraction (XRD) spectra of 4-POXD-B12 xerogels from DMSO, acetonitrile and DMF.

Fig. S11. UV-vis spectra of 4-POXD-B8 in aprotic solvents.

Fig. S12. UV-vis spectra of 4-POXD-B8 in protic solvents.

Fig. S13. FL spectra of 4-POXD-B8 in different solvents at a concentration of 1×10^{-5} mol/L at room temperature.

Fig. S14.¹ H NMR spectrum of 4-POXD-B4 in CDCl₃.

Fig. S16. FTIR spectrum of 4-POXD-B4 powder.

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

[1] Reichardt, C. solvents and solvent effects in organic chemistry, 3rd ed, Wiley-VCH: New York, 2003.