Copper(II) Ionic Liquid Catalyzed Cyclization-Aromatization of Hydrazones with Dimethyl Acetylenedicarboxylate: A Green Synthesis of Fully Substituted Pyrazoles

Shirin Safaei, Iraj Mohammadpoor-Baltork,* Ahmad Reza Khosropour,* Majid Moghadam, Shahram Tangestaninejad and Valiollah Mirkhani

Catalysis Division, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran

E-mails: imbaltork@sci.ui.ac.ir; E-mail: khosropour@chem.ui.ac.ir; E-mail: khosropour@chem.ui.ac.ir; E-mail: khosropour@chem.ui.ac.ir; E-mail: khosropour@chem.ui.ac.ir; E-mail: khosropour@chem.ui.ac.ir

General information	S2
General procedure for synthesis of pyrazoles	S2
Spectroscopic data of the products	S3-S9
Copies of ¹ H NMR and ¹³ C NMR of compounds	S10-S24
Crystal structure of compound 4h	S25
Crystal data and structure refinement for compound 4h	S26
References	S27

General information

Melting points were determined with a Stuart Scientific SMP2 apparatus and are uncorrected. FT-IR spectra were obtained as KBr pellets using a Nicolet-Impact 400D instrument in the range of 400-4000 cm⁻¹. ¹H NMR (400 and 500 MHz) and ¹³C NMR (100 and 125 MHz) spectra were recorded on Bruker-Avance 400 and 500 spectrometers, respectively. All mass spectra were recorded on Micromass Platform II spectrometer from Micromass. EI mode at 70 eV. Elemental analysis was carried out with a LECO, CHNS-932 instrument.

General procedure for synthesis of pyrazoles via cyclization-aromatization of hydrazone with dimethyl acetylenedicarboxylate

A mixture of aldehyde (1 mmol), arylhydrazine (1 mmol) was stirred for 20 min. Then, DMAD (1.2 mmol) and catalyst (0.25 mmol) were added and the mixture was heated at 100 $^{\circ}$ C under solvent-free conditions for the appropriate time (Table 2). The progress of the reaction was monitored by TLC (eluent: *n*-hexane/ethyl acetate, 9:1). After completion of the reaction, the mixture was cooled to room temperature and water was added (30 ml). The mixture was filtered and the crude product was purified by recrystallization from EtOH to afford the pure product. If necessary, the product was purified by silica gel column chromatography (eluent: *n*-hexane/ethyl acetate: 12/1).

The structure of the products was identified by their IR, mass, ¹H and ¹³C NMR spectra and elemental analysis. Furthermore, the structure of **4h** was confirmed byX-ray crystallographic analysis (CCDC 867509, Fig. 1). Regarding to the number of peaks in¹³CNMR and also the intensity of each peak, it is important to note

that due to the use of polarization transfer (from 1 H to 13 C) *via* NOE effect in the pulse program applied to obtain the 13 C spectra, the carbon atoms attached to more number of hydrogen atoms acquire more polarization and thus, their peaks are more intense. Difference in the relaxation times is another source of variation of the peak intensity. For example, the methyl group carbon atoms which are more exposed to solvent molecules has shorter relaxation times and thus, smaller intensities.

It is noteworthy that because of similar electronic environments, some ¹³C nuclei have very close chemical shifts and appear at the same position. Therefore, the number of peaks in the ¹³C NMR spectra correspond to the number of types of carbon atoms is less than the number of carbon atoms of the compounds.

Spectroscopic data of the products

Dimethyl 1,3-diphenyl-1*H*-pyrazole-4,5-dicarboxylate (4a)^{1,2}

Mp: 154-155 °C. IR (KBr): $v_{max} = 3008$, 2951, 1732, 1594, 1497, 1269, 1107, 760 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 3.83$ (s, 3H), 3.86 (s, 3H), 7.41-7.55 (m, 8H), 7.76 (dd, ¹J = 7.7 Hz, ²J = 1.8 Hz, 2H).

Dimethyl3-(4-bromophenyl)-1-phenyl-1*H*-pyrazole-4,5-dicarboxylate (4b)¹

Mp: 85 °C. IR (KBr): $v_{max} = 3064$, 2949, 1714, 1733, 1596, 1497, 1229, 1186, 759 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 3.83$ (s, 3H), 3.86 (s, 3H), 7.46-7.54 (m, 5H), 7.56 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 52.21$, 53.23, 113.88, 123.36, 124.49, 129.24, 129.29, 130.36, 130.52, 131.39, 137.32, 138.95, 151.08, 160.65, 163.12.

Dimethyl 3-(4-cyanophenyl)-1-phenyl-1*H***-pyrazole-4,5-dicarboxylate (4c)**¹

Mp: 137-138 °C. IR (KBr): $v_{max} = 3067$, 2948, 2227, 1733, 1595, 1446, 1244, 1123, 824 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 3.84$ (s, 3H), 3.87 (s, 3H), 7.49-7.54 (m, 5H), 7.73 (d, J = 8.2 Hz, 2H), 7.92 (d, J = 8.2 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 52.32$, 53.33, 112.57, 114.02, 118.72, 124.42, 129.37, 129.46, 129.61, 131.95, 135.95, 137.78, 138.77, 150.30, 160.50, 162.80.

Dimethyl 3-(4-cyanophenyl)-1-p-tolyl-1H-pyrazole-4,5-dicarboxylate (4d)

Mp: 140 °C. IR (KBr): $v_{max} = 3011$, 2952, 2225, 1728, 1510, 1445, 1246, 1123, 819 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 2.42$ (s, 3H), 3.83 (s, 3H), 3.87 (s, 3H), 7.29 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 8.1 Hz, 2H), 7.91 (d, J = 8.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 21.22$, 52.26, 53.31, 112.47, 113.78, 118.75, 118.78, 124.23, 129.61, 129.92, 131.93, 136.04, 136.33, 137.70, 139.69, 150.12, 162.85. MS: m/z = 376.07 ([M+2].⁺, 60.34), 375.06 ([M].⁺, 93.97), 344.07 (84.48), 125.17 (79.74), 111.14 (89.22), 97.13 (48.28), 57.11 (95.26). Anal. Calcd for C₂₁H₁₇N₃O₄: C, 67.19; H, 4.56; N, 11.19. Found: C, 67.01; H, 4.68; N, 11.24.

Dimethyl 3-(3-nitrophenyl)-1-phenyl-1*H*-pyrazole-4,5-dicarboxylate (4e)

Mp: 111 °C. IR (KBr): $v_{max} = 3032$, 2959, 1722, 1595, 1447, 1268, 1116, 758 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 3.86$ (s, 3H), 3.89 (s, 3H), 7.49-7.57 (m, 5H), 7.62 (t, J = 8.0 Hz, 1H), 8.15 (d, J = 7.8 Hz, 1H), 8.27-8.29 (m, 1H), 8.70 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 52.33$, 53.39, 113.81, 123.65, 124.19, 124.35, 129.10, 129.41, 129.46, 133.13, 135.02, 138.02, 138.73, 148.24, 149.98,

160.62, 162.67. MS: m/z = 381.04 ([M].⁺, 25.82), 350.05 (22.95), 207.21 (11.27), 125.07 (85.66), 111.06 (93.85), 97.05 (95.08), 57.02 (100). Anal. Calcd for C₁₉H₁₅N₃O₆: C, 59.84; H, 3.96; N, 11.02. Found: C, 59.92; H, 4.05; N, 11.11.

Dimethyl 3-(3-nitrophenyl)-1-p-tolyl-1H-pyrazole-4,5-dicarboxylate (4f)

Mp: 132-135 °C. IR (KBr): $v_{max} = 3030, 2951, 1727, 1522, 1497, 1354, 1128, 817 \text{ cm}^{-1}$. ¹H NMR (500 MHz, CDCl₃): $\delta = 2.43$ (s, 3H), 3.85 (s, 3H), 3.88 (s, 3H), 7.30 (d, J = 8.1 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 7.61 (t, J = 7.9 Hz, 1H), 8.14 (d, J = 7.2 Hz, 1H), 8.26-8.28 (m, 1H), 8.69 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 21.22, 52.29, 53.35, 113.60, 123.60, 124.16, 128.82, 129.07, 129.95, 133.21, 135.03, 136.30, 137.95, 139.68, 148.20, 149.80, 160.72, 162.72. MS: <math>m/z = 396.99$ ([M+2]·⁺, 15.24), 394.96 ([M]·⁺, 100), 363.94 (88.62), 331.95 (16.87), 229.00 (16.16, 129.95 (29.67), 90.95 (84.96), 76.95 (42.68). Anal. Calcd for C₂₀H₁₇N₃O₆: C, 60.76; H, 4.33; N, 10.63. Found: C, 60.63; H, 4.45; N, 10.66.

Dimethyl 3-(4-chlorophenyl)-1-phenyl-1*H*-pyrazole-4,5-dicarboxylate (4g)¹

Mp: 63-65 °C. IR (KBr): $v_{max} = 3018$, 2965, 1735, 1706, 1594, 1498, 1233, 1165, 839 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 3.83$ (s, 3H), 3.87 (s, 3H), 7.41 (d, J = 8.5 Hz, 2H), 7.42-7.54 (m, 5H), 7.72 (d, J = 8.5 Hz, 2H).

Dimethyl 1,3-bis(4-chlorophenyl)-1*H*-pyrazole-4,5-dicarboxylate (4h)

Mp: 130-132 °C. IR (KBr): $v_{max} = 3001$, 2949, 1735, 1539, 1496, 1228, 1089, 834 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 3.83$ (s, 3H), 3.88 (s, 3H), 7.41 (d, J = 7.6 Hz, 2H), 7.46 (s, 4H), 7.70 (d, J = 7.6 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 52.29$, 53.30, 114.48, 125.87, 128.51, 129.45, 129.66, 130.12, 135.20, 135.23, 137.00, 137.45, 151.13, 160.37, 163.09. MS: m/z = 407.99 ([M+4]·⁺, 24.28), 405.99 ([M+2]·⁺, 75.00), 403.99 ([M]·⁺, 84.84), 372.98 (80.33), 184.56 (27.05), 125.13(34.43), 111.07 (100), 97.12 (87.30), 69.09 (87.70). Anal. Calcd for C₁₉H₁₄Cl₂N₂O₄: C, 56.31; H, 3.48; N, 6.91. Found: C, 56.24; H, 3.53; N, 6.90.

Dimethyl 3-(4-chlorophenyl)-1-p-tolyl-1H-pyrazole-4,5-dicarboxylate (4i)

Mp: 136 °C. IR (KBr): $v_{max} = 3013$, 2947, 1726, 1602, 1511, 1277, 1102, 824 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 2.45$ (s, 3H), 3.82 (s, 3H), 3.86 (s, 3H), 7.28 (d, J = 7.9 Hz, 2H), 7.40 (d, J = 7.9 Hz, 2H), 7.71 (d, J = 7.9 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 21.19$, 52.14, 53.17, 113.68, 124.32, 128.40, 129.82, 129.98, 130.26, 134.98, 136.53, 137.25, 139.39, 150.88, 160.73, 163.18. MS: m/z = 386.02 ([M+2]⁺⁺, 34.12), 384.00 ([M]⁺⁺, 70.59), 353.01 (61.57), 179.20 (22.84), 111.12 (86.67), 97.12 (89.80), 69.09 (98.43), 57.09 (100). Anal. Calcd for C₂₀H₁₇ClN₂O₄: C, 62.42; H, 4.45; N, 7.28. Found: C, 62.23; H, 4.50; N, 7.23.

Dimethyl 1-phenyl-3-p-tolyl-1H-pyrazole-4,5-dicarboxylate (4j)^{1,2}

Mp: 66 °C. IR (KBr): $v_{max} = 3032, 2959, 1722, 1595, 1447, 1268, 1116, 758 \text{ cm}^{-1}$. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.41$ (s, 3H), 3.85 (s, 3H), 3.87(s, 3H), 7.26 (d, J = 8.0 Hz, 2H), 7.46-7.56 (m, 5H), 7.66 (d, J = 8.4 Hz, 2H).

Dimethyl 3-hexyl-1-phenyl-1*H*-pyrazole-4,5-dicarboxylate (4k)

Oil. IR (neat): $v_{max} = 3042$, 2955, 1725, 1597, 1504, 1255, 1108, 761 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 0.89$ (s, 3H),1.26-141 (m, 6H), 1.68-1.74 (m, 2H), 2.91 (t, J = 7.7 Hz, 2H), 3.85 (s, 6H), 7.41-7.49 (m, 5H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 14.08$, 22.60, 27.61, 29.05, 29.21, 31.59, 51.70, 53.24, 100.01, 123.82, 128.74, 129.32, 134.14, 141.74, 145.73, 154.48, 158.03. MS: m/z = 345.14 ([M+1]·⁺, 31.10), 344.14 ([M]·⁺, 68.11), 313.14 (53.54), 255.10 (67.32), 113.09 (92.52), 77.02 (96.46), 55.05 (100). Anal. Calcd for C₁₉H₂₄N₂O₄: C, 66.26; H, 7.02; N, 8.13. Found: C, 66.29; H, 7.14; N, 8.21.

Dimethyl 3-propyl-1-phenyl-1*H*-pyrazole-4,5-dicarboxylate (4l)

Oil. IR (neat): $v_{max} = 3024$, 2957, 1744, 1724, 1597, 1504, 1255, 1106, 761 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.02$ (t, J = 7.2 Hz, 3H), 1.72-1.82 (m, 2H), 2.92 (t, J = 8.0 Hz, 2H), 3.87 (s, 6H), 7.42-

7.51 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.02$, 22.37, 29.50, 51.73, 53.28, 114.17, 123.78, 128.75, 129.33, 131.27, 139.13, 144.91, 155.08, 157.16. MS: m/z = 303.11 ([M+1]⁺⁺, 56.86), 302.10 ([M]⁺⁺, 82.35), 271.07 (84.31), 255.00 (4.11), 183.14 (67.06), 158.13 (88.63), 111.17 (74.17), 77.09 (100). Anal. Calcd for C₁₆H₁₈N₂O₄: C, 63.56; H, 6.00; N, 9.27. Found: C, 63.45; H, 5.90; N, 9.33.

Dimethyl3-(4-cyanophenyl)-1-(4-methoxyphenyl)-4,5-dihydro-1*H*-pyrazole-4,5-dicarboxylate (5m)

Mp: 184-186 °C. IR (KBr): $v_{max} = 3039, 2931, 2224, 1742, 1509, 1238, 1153, 1011, 820 cm^{-1}. ¹H NMR (500 MHz, CDCl₃): <math>\delta = 3.74$ (s, 3H), 3.76 (s, 3H), 3.79 (s, 3H), 4.55 (d, J = 5.0 Hz, 1H), 5.26 (d, J = 5.0 Hz, 1H), 6.89 (d, J = 8.9 Hz, 2H),7.12 (d, J = 9.0 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.86 (d, J = 8.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 53.17, 53.36, 54.90, 55.65, 66.61, 111.33, 114.76, 115.25, 118.85, 126.28, 132.24, 135.66, 137.02, 140.47, 154.76, 168.83, 169.66. MS: <math>m/z = 393.09$ ([M]·⁺, 0.89), 334.03 (1.19), 273.06 (1.00), 129.99 (1.92), 101.96 (5.01), 59.01 (100). Anal. Calcd for C₂₁H₁₉N₃O₅: C, 64.12; H, 4.87; N, 10.68. Found: C, 64.05; H, 4.90; N, 10.64.

Dimethyl3-(4-methoxyphenyl)-1-phenyl-4,5-dihydro-1*H*-pyrazole-4,5-dicarboxylate (5n)³

Mp: 151-152 °C. IR (KBr): $v_{max} = 3053$, 2953, 1744, 1595, 1500, 1242, 1143, 1015, 834 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 3.72$ (s, 3H), 3.76 (s, 3H), 3.85 (s, 3H), 4.55 (d, J = 4.5 Hz, 1H), 5.15 (d, J = 5.0 Hz, 1H), 6.93-6.88 (m, 3H), 7.13 (d, J = 7.8 Hz, 2H), 7.30 (t, J = 8.5 Hz, 2H), 7.75 (d, J = 8.9 Hz, 2H). MS: m/z = 368.07 ([M].⁺, 5.86), 309.07 (7.09), 250.11 (7.48), 207.12 (8.57), 111.11 (15.87), 77.06 (46.63), 43.15 (100).

Dimethyl 3-(4-cyanophenyl)-1-(4-methoxyphenyl)-1H-pyrazole-4,5-dicarboxylate (4m)

Mp: 125 °C. IR (KBr): $v_{max} = 3029$, 2943, 2223, 1733, 1506, 1150, 1008, 828 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.84$ (s, 3H), 3.866 (s, 3H), 3.868 (s, 3H), 6.99 (d, J = 8.8 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.8 Hz, 2H), 7.90 (d, J = 9.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 52.34$, 53.34, 55.61, 114.40, 118.76, 125.96, 128.80, 129.55, 130.62, 130.90, 131.68, 132.33, 132.46, 135.98, 150.03, 160.25, 160.52. MS: m/z = 391.10 ([M]·⁺, 15.70), 360.09 (8.52), 273.08 (2.38), 130.02 (23.99), 77.05 (38.12), 58.97 (100). Anal. Calcd for C₂₁H₁₇N₃O₅: C, 64.45; H, 4.38; N, 10.74. Found: C, 64.43; H, 4.41; N, 10.72.

Dimethyl 3-(4-methoxyphenyl)-1-phenyl-1*H*-pyrazole-4,5-dicarboxylate (4n)

Mp: 110 °C. IR (KBr): $v_{max} = 3050, 2948, 1740, 1597, 1502, 1237, 830 \text{ cm}^{-1}$. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.83$ (s, 3H), 3.857 (s, 3H), 3.859 (s, 3H), 6.97 (d, J = 9.2 Hz, 2H), 7.41-7.46 (m, 4H), 7.73-7.75 (M, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 52.18, 53.13, 55.57, 114.25, 126.14, 128.20, 128.48, 128.76, 128.80, 128.85, 130.89, 132.09, 133.11, 152.73, 160.03, 161.01. MS: <math>m/z = 366.09$ ([M]·⁺, 2.53), 335.09 (7.27), 149.06 (12.27), 111.10 (17.61), 77.06 (40.00), 59.05 (100). Anal. Calcd for C₂₀H₁₈N₂O₅: C, 65.57; H, 4.95; N, 7.65. Found: C, 65.53; H, 4.99; N, 7.70.

Copies of ¹H NMR and ¹³C NMR of products:

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

Fig. 1 The crystal structure of compound 4h

 Table 1.Crystal data and structure refinement for compound 4h.

Identification code	1c	1c	
Empirical formula	$C_{38}H_{28.71}Cl_{3.29}N_4O_8$	$C_{38}H_{28.71}Cl_{3.29}N_4O_8$	
Formula weight	785.99	785.99	
Temperature	293(2) K		
Wavelength	0.71069 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 29.363(5) Å	$\alpha = 90.000(5)^{\circ}$	
	b = 9.591(5) Å	$\beta = 119.839(5)^{\circ}$	
	c = 15.551(5) Å	$\gamma = 90.000(5)^{\circ}$	
Volume	3799(2) Å ³		
Z	4	4	
Density (calculated)	1.374 Mg/m ³	1.374 Mg/m ³	
Absorption coefficient	0.318 mm ⁻¹	0.318 mm ⁻¹	
F(000)	1619		
Crystal size	0.21 x 0.11 x 0.08 mm ³		
Theta range for data collection	2.50 to 29.33°.		
Index ranges	-40< h< 40, -13< k< 10, -18< l< 21		
Reflections collected	12034		
Independent reflections	5004 [R(int) = 0.092]	5004 [R(int) = 0.092]	
Completeness to theta = 29.33°	95.9 %	95.9 %	
Absorption correction	Semi-empirical from e	Semi-empirical from equivalents	
Max. and min. transmission	1.0000 and 0.9880	1.0000 and 0.9880	
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F ²	
Data / restraints / parameters	5004 / 0 / 245		
Goodness-of-fit on F ²	0.644	0.644	
Final R indices [I>2sigma(I)]	R1 = 0.0578, wR2 = 0	R1 = 0.0578, wR2 = 0.1605	
R indices (all data)	R1 = 0.2934, wR2 = 0	R1 = 0.2934, $wR2 = 0.2158$	
Largest diff. peak and hole	0.195 and -0.329 e. $Å^{-1}$	0.195 and -0.329 e. Å ⁻³	

References:

- 1) Ma, C.; Li, Y.; Wen, P.; Yan, R.; Ren, Z.; Huang, G. Synlett2011, 1321-1323.
- 2) Yavari, I.; Khalili, G.; Mirzaei, A. Helv. Chim. Acta2010, 93, 277-280.
- 3) Wang, Y.; Vera, C. I. R.; Lin, Q. Org. Lett. 2007, 9, 4155-4158.