# **Electronic Supporting Information**

For

# Solvent/temperature-dpendent assemblies of several high-dimensional supramolecular networks containing quinoline-2,3-dicarboxylic acid

Xu-Jia Hong,<sup>*a,b*</sup> Ming-Fang Wang,<sup>*a*</sup> Hong-Yang Jia,<sup>*a*</sup> Wei-Xing Li,<sup>*a*</sup> Jing Li,<sup>*a*</sup> Yi-Ting Liu,<sup>*a*</sup> Hong-Guang Jin<sup>*a*</sup> and Yue-Peng Cai\*<sup>*a,b*</sup>

<sup>a</sup>School of Chemistry and Environment, South China Normal University, Key Laboratory of the energy conversion and energy storage materials Guangzhou 510006, *P. R. China.*<sup>b</sup>State Key laboratory of Coordination Chemistry, Nanjing University.

# Contents

- 1. Table S1: Crystal data and structure refinement for complexes 1-4.
- 2. Table S2: Selected Bond Distances (Å) and Angles (°) for complexes 1-4.
- **3.** Table **S3**: Distances (Å) and angles (°) of hydrogen bonds for the compounds **1-4**.
- 4. Figure S1: IR spectra of compounds 1-4.
- 5. Figure S2: The thermal analyses (N2) of the crystalline 1-4 (TG curves).
- 6. Figure S3: 3-D supramolecular framework with 1-D channels of  $6.1 \times 6.5$  Å occupied by solvent benzene molecules through the inter-layer  $\pi \cdots \pi$  weak interaction from two quinoline rings (the shortest distance between two quinoline rings is about 3.56 Å) and hydrogen bonds O-H…O from the coordinated water molecules.
- 7. Figure S4: Experimental (at 25 °C and 245 °C) and simulated XRPD patterns of (a)
  1; (b) 2; (c) 3; (b) 4.

| Complexes                                          | 1                              | 2                              | 3                              | 4                              |
|----------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Empirical formula                                  | $C_{22}H_{16}N_2O_{10}Zn$      | $C_{26}H_{24}N_2O_{10}S_2Zn$   | $C_{28}H_{22}N_2O_{10}Zn$      | $C_{22}H_{12}N_2O_8Zn$         |
| Formula weight                                     | 533.74                         | 653.96                         | 611.85                         | 497.71                         |
| Temperature                                        | 298(2) K                       | 298(2) K                       | 298(2) K                       | 298(2) K                       |
| Wavelength                                         | 0.71073 Å                      | 0.71073 Å                      | 0.71073 Å                      | 0.71073 Å                      |
| Crystal system                                     | triclinic                      | triclinic                      | monoclinic                     | monoclinic                     |
| Space group                                        | <i>P</i> -1                    | <i>P</i> -1                    | C2/c                           | $P2_{1}/n$                     |
| <i>a</i> (Å)                                       | 7.4062(17)                     | 8.453(5)                       | 17.912(4)                      | 12.693(4)                      |
| <i>b</i> (Å)                                       | 9.136(2)                       | 9.025(5)                       | 7.1061(15)                     | 5.7903(19)                     |
| <i>c</i> (Å)                                       | 9.415(3)                       | 9.160(6)                       | 20.966(4)                      | 13.581(5)                      |
| α (°)                                              | 110.466(4)                     | 76.339(8)                      | 90                             | 90                             |
| β (°)                                              | 98.320(4)                      | 85.010(9)                      | 107.440(2)                     | 115.966(4)                     |
| γ (°)                                              | 111.664(3)                     | 73.885(8)                      | 90                             | 90                             |
| $V(\text{\AA}^3)$                                  | 526.6(2)                       | 652.2(7)                       | 2545.9(9)                      | 897.4(5)                       |
| Ζ                                                  | 1                              | 1                              | 4                              | 2                              |
| $\rho$ (cald.) (mg m <sup>-3</sup> )               | 1.683                          | 1.665                          | 1.596                          | 1.842                          |
| $\mu$ (m <sup>-1</sup> )                           | 1.232                          | 1.166                          | 1.031                          | 1.431                          |
| <i>F</i> (000)                                     | 272                            | 336                            | 1256                           | 504                            |
| Crystal size (mm)                                  | $0.26 \times 0.18 \times 0.11$ | $0.18 \times 0.15 \times 0.09$ | $0.22 \times 0.16 \times 0.09$ | $0.25 \times 0.21 \times 0.16$ |
| $\theta$ range for data collection (°)             | 2.43 to 25.20                  | 2.29 to 25.19                  | 2.04 to 25.20                  | 1.83 to 25.20                  |
| <i>h/k/l</i> (max, min)                            | -6 , 8/-10, 10/ -10, 11        | -9, 10/-10, 10/ -8, 10         | -18, 21/-8, 6/ -24, 25         | -12, 15/-6, 6/ -16, 14         |
| Reflections collected                              | 2731                           | 3366                           | 6252                           | 4341                           |
| Unique                                             | 1861 [R(int) = 0.0250]         | 2307 [R(int) = 0.0307]         | 2300[R(int) = 0.0306]          | 1609 [R(int) = 0.0583]         |
| Completeness to $\theta = 27.13$                   | 98.0 %                         | 98.4 %                         | 99.7 %                         | 99.3 %                         |
| Absorption correction                              | empirical                      | empirical                      | empirical                      | empirical                      |
| Max. and min. transmission                         | full-matrix                    | full-matrix                    | full-matrix                    | full-matrix                    |
|                                                    | least-squares on $F^2$         | least-squares on $F^2$         | least-squares on $F^2$         | least-squares on $F^2$         |
| Data / restraints / parameters                     | 1861 / 3 / 165                 | 2307 / 0 / 190                 | 2300 / 4 / 195                 | 1609 / 1 / 155                 |
| Goodness-of-fit on $F^2$                           | 1.074                          | 1.047                          | 1.099                          | 1.003                          |
| Final $R1^{a}$ , $wR2^{b}$ indices [ $I > 2\sigma$ | 0.0543, 0.1331                 | 0.0576, 0.1265                 | 0.0594, 0.1812                 | 0.0496, 0.1038                 |
| ( <i>I</i> )]                                      | 0.0650, 0.1408                 | 0.0857, 0.1442                 | 0.0800, 0.1979                 | 0.0864, 0.1206                 |
| R1, wR2 indices (all data)                         | 0.383 / -0.709                 | 0.397 / -0.650                 | 0.706 /-0.656                  | 0.409 /-0.550                  |
| T . 100 D 1/1 1 ( 9-3)                             |                                |                                |                                |                                |

#### Table S1. Crystal data and structure refinement for complexes 1-4.

Largest diff. Peak/ hole(e  $Å^{-3}$  )

 $\frac{1}{[\sigma^2(F_o^2) + (0.1077P)^2 + 15.9016P]} \text{ for } \mathbf{3} \text{ and } w = 1/[\sigma^2(F_o^2) + (0.0338P)^2 + 2.0990P]} \text{ for } \mathbf{4}, P = (F_o^2 + 2F_o^2)/3.$ 

|                   |           | 1                 |            |
|-------------------|-----------|-------------------|------------|
| Zn(1)-O(2)        | 2.031(3)  | O(2)-Zn(1)-N(1)   | 75.25(12)  |
| Zn(1)-O(3)        | 2.091(3)  | O(2)-Zn(1)-N(1)#1 | 104.75(12) |
| Zn(1)-N(1)        | 2.221(3)  | O(3)-Zn(1)-N(1)   | 90.72(13)  |
| O(2)-Zn(1)-O(3)   | 89.79(13) | O(3)-Zn(1)-N(1)#1 | 89.28(13)  |
| O(2)-Zn(1)-O(3)#1 | 90.21(14) |                   |            |
|                   |           | 2                 |            |
| Zn(1)-O(1)        | 2.000(3)  | O(6)-Zn(1)-N(1)#2 | 88.19(15)  |
| Zn(1)-O(5)        | 2.110(4)  | O(1)-Zn(1)-N(1)   | 77.05(14)  |
| Zn(1)-N(1)        | 2.126(4)  | O(6)-Zn(1)-N(1)   | 91.81(15)  |
| O(1)-Zn(1)-O(6)#2 | 86.02(15) | O(1)-Zn(1)-N(1)#2 | 102.95(14) |
| O(1)-Zn(1)-O(6)   | 93.97(15) |                   |            |
|                   |           | 3                 |            |
| Zn(1)-O(1)        | 2.034(3)  | O(1)-Zn(1)-N(1)   | 74.24(14)  |
| Zn(1)-O(3)        | 2.052(4)  | O(3)-Zn(1)-N(1)   | 91.64(15)  |
| Zn(1)-N(1)        | 2.254(4)  | O(1)-Zn(1)-N(1)#2 | 105.76(14) |
| O(1)-Zn(1)-O(3)#2 | 91.67(16) | O(3)-Zn(1)-N(1)#2 | 88.36(15)  |
| O(1)-Zn(1)-O(3)   | 88.33(16) |                   |            |
|                   |           | 4                 |            |
| Zn(1)-O(1)        | 1.892(3)  | O(1)-Zn(1)-N(1)#3 | 98.55(14)  |
| Zn(1)-N(1)        | 2.127(3)  | O(1)-Zn(1)-N(1)   | 81.45(14)  |
| Zn(1)-O(3)#4      | 2.476(3)  | O(1)-Zn(1)-O(3)#5 | 90.19(13)  |
| Zn(1)-O(3)#5      | 2.476(3)  | N(1)-Zn(1)-O(3)#4 | 85.30(12)  |
| N(1)-Zn(1)-O(3)#5 | 94.70(12) |                   |            |

### Table S2. Selected Bond Distances (Å) and Angles (°) for complexes 1-4\*.

\*Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z+1; #2 -x+1,-y+1,-z; #3 -x+2,-y,-z+2; #4 -x+3/2,y+1/2,-z+3/2; #5 x+1/2,-y-1/2,z+1/2.

| D-H···A            | d(H···A) | d(D····A) | ∠D-H…A |  |
|--------------------|----------|-----------|--------|--|
|                    |          | 1         |        |  |
| O4-H4…O1           | 1.55     | 2.387(5)  | 176    |  |
| O3-H3A…O5#1        | 1.94     | 2.743(5)  | 165    |  |
| O3-H3B…O4#2        | 1.97     | 2.795(4)  | 177    |  |
| С8-Н8…О1#3         | 2.52     | 3.385(5)  | 136    |  |
| $\pi \cdots \pi^a$ | 3.58     |           |        |  |
|                    |          | 2         |        |  |
| O3-H3···O2         | 1.63     | 2.444(6)  | 173    |  |
| C12-H12A…O4#4      | 2.52     | 3.425(6)  | 157    |  |
| C13-H13C····O4#4   | 2.71     | 3.572(6)  | 145    |  |
| C13-H13B····O1#5   | 2.66     | 3.582(5)  | 160    |  |
| C13-H13B····O2#5   | 2.63     | 3.486(6)  | 148    |  |
| С8-Н8…О3#6         | 2.48     | 3.267(5)  | 142    |  |
| С9-Н9…О2#6         | 2.68     | 3.572(5)  | 161    |  |
| $\pi \cdots \pi^a$ | 3.71     |           |        |  |
|                    |          | 3         |        |  |
| O3-H3A…O5#7        | 1.94     | 2.747(5)  | 144    |  |
| O3-H3A…O3#8        | 2.33     | 3.130(4)  | 154    |  |
| O4-H4···O2         | 1.69     | 2.386(5)  | 165    |  |
| C8-H8····O4#9      | 2.63     | 3.430(5)  | 145    |  |
| С9-Н9…О2#9         | 2.69     | 3.515(6)  | 148    |  |
| C7-H7··· $\pi^b$   | 2.63     |           |        |  |
| $\pi \cdots \pi^b$ | 3.56     |           |        |  |
|                    |          | 4         |        |  |
| O3-H3····O2#10     | 1.74     | 2.570(5)  | 171    |  |
| C10-H10····O4#11   | 2.68     | 2.723(3)  | 156    |  |

Table S3. Distances (Å) and angles (°) of hydrogen bonds for the compounds 1-4\*.

\*Symmetry transformation used to generate equivalent atoms: #1 x-1,y-1,z; #2 -x, -y+1, -z+1; #3 -x-2, y-1/2, -z+1/2; #4 -x-1, y-1/2, -z+1/2; #5 -x,-y,-z+1; #6 x-1,y,z; #7 x-1/2,y+1/2,z; #8 -x+1,-y+2,-z; #9 -x-1,-y,-z; #10 -x+3/2,y+1/2, -z+3/2; #11 x-1/2,y,-z+1/2. <sup>*a*</sup> Denotes distances between the centroids of quinoline rings, <sup>*b*</sup> denotes the shortest distance between two quinoline rings in crystal lattice of compound **3**.

(a) For compound 1



(b) For compound 2



(c) For compound **3** 



(d) For compound 4



(a) for compound 1



(**b**) for compound 2



### (c) for compound 3



(d) for compound 4







(b) For compound 2



(c) For compound 3



(d) compound 4

