Supporting Information

for

2,2'-bipyridine Zn(II) complexes: role of the 4,4' substituents on the crystalline solid state properties

Yogesh J. Yadav, Teresa F. Mastropietro, Elisabeta Ildyko Szerb, Anna Maria Talarico, Sante Pirillo, Daniela Pucci, Alessandra Crispini and Mauro Ghedini **Figure S1.** NMR spectra of the free ligand L1 (a) and the adduct **1a** {[(L1)₃Zn](PF₆)₂}₂·L1·2H₂O (b) with the proton of the coordinated bipyridines labeled as $_{Zn}H^3$, $_{Zn}H^5$ and $_{Zn}H^6$.

Figure S2. PXRD spectrum of the reaction product after grinding in the synthesis of **2a** (black line) superimposed to that of **2** (red line)

Figure S3. PXRD spectrum of the reaction product after grinding in the synthesis of **2b** (black line) superimposed to that of **2** (red line)

Figure S4. Crystals of the supramolecular adduct 2a (a) and precursor 2 (b).

	1a	2a	2	La
formula	CouHooForNuOuPr7no	CouHorEn Nu Ou P.Zno	- CarHarEuNrOrPa7n	CueHuaNaOa
Mr	2260 30	2260 30	1004 02	216.24
crystal system	Triclinic	Triclinic	Triclinic	Monoclinic
snace group	P-1	P-1	P-1	p(2)1/c
a [Å]	12 (0842(18))	12 1158(12)	11 354(3)	$\frac{p(2)1}{2}$
b [Å]	14 630(2)	14.8243(18)	13.202(4)	12.063(8)
c [Å]	14.997(2)	15.0480(17)	15.056(5)	16.970(11)
α [°]	68.239(7)	67.610(5)	76.794(13)	90
β [°]	88.188(7)	87.958(5)	76.652(13)	96.79(2)
γ[°]	76.637(7)	76.494(5)	83.772(13)	90
$V[Å^3]$	2391.4(6)	2425.6(5)	2134.0(12)	1526.0(18)
Z	1	1	2	6
ρ cald [gcm ⁻³]	1.569		1.563	1.412
$\mu [\mathrm{cm}^{-1}]$	0.686		0.754	0.098
θ range [°]	1.46-26.33		1.42-26.15	2.08 to 25.02°
data collected	103631		69588	15114
unique data, R _{int}	9640, 0.0599		8353, 0.0414	2649, 0.0552
obs. data	6787		6545	2649
$[I > 2\sigma(I)]$				
no. parameters	647		568	220
R_1 [obs. data]	0.0873		0.0457	0.0485
wR_2 [all data]	0.2660		0.1394	0.1244
GOF	1.186		1.019	1.024

Table S1 Details of data collection and structure refinements for complexes 1a, 2a and 2

Figure S5 View of the supramolecular tetra-cationic complex supported by π - π stacking in 2a.

Structural description of L1.

Figure S6 View of the L₁ ligand showing the atomic labelling scheme; a = (x-1, 1-y, -z)

The crystal structure of the pure ligand **L1** is made up of two crystallographic non equivalent ligands, one of them lying on an inversion centre, both showing the usual NN *trans* conformation. The heteroaromatic rings of the ligands assemble into a columnar organization by means of $\pi \cdots \pi$ stacking interactions [shortest distances between pyridine planes in the range of 3.4-3.5 Å, as provided by PLATON analysis]. The shortest interplanar distances are observed between pairs of $\pi \cdots \pi$ stacked ligands for which the additional contribution of hydrogen bonding interactions, similar to those observed in **1a**, is present (Figure 3) $[O(2)\cdots O(1)^i 2.76(1); O(2)-H(2a)\cdots O(1)^i$ distance and angle of 1.952 Å and 167.32° respectively; *i* = -*x*+1, -*y*, -*z*+2], proving the tendency of hydrogen bonds to support stacking interactions in these systems.

Figure S7 View of the supramolecular packing along the a crystallographic axis in L_1 .