## SUPPLEMENTARY DATA

## Effect of proline analogues on the conformation of elastin peptides

Antonietta Pepe,\*<sup>a</sup> Maria Antonietta Crudele<sup>a</sup> and Brigida Bochicchio<sup>\*a</sup>

Department of Science, University of Basilicata, Potenza, Italy. Fax: +39 0971205678; Tel: +39 0971205486-5481; E-mail: antonietta.pepe@unibas.it; brigida.bochicchio@unibas.it

|                       | Che  | -Δδ/ΔT (ppb/K) |           |            |     |
|-----------------------|------|----------------|-----------|------------|-----|
| residue <sup>a</sup>  | NH   |                |           |            |     |
| $\mathbf{V}^1$        | -    | 3.85           | 2.24      | 1.05       | -   |
| $G^2$                 | 8.69 | 4.09/4.00      |           |            | 6.3 |
| $V^3$                 | 8.25 | 4.46           | 2.08      | 0.98/0.95  | 9.1 |
| $\mathbf{P}^4$        | -    | 4.42           | 2.32/2.08 | γ          | -   |
|                       |      |                |           | δ3.90/3.71 |     |
| $G^5$                 | 8.46 | 3.99           |           |            | 7.6 |
| $V^6$                 | 7.96 | 4.19           | 2.11      | 0.95       | 6.8 |
| <b>G</b> <sup>7</sup> | 8.48 | 4.00           |           |            | 7.5 |

Table S1: Assignments of proton resonances of peptide E7P in H<sub>2</sub>O/D<sub>2</sub>O (90/10, v/v) at 25°C

Table S2: Assignments of proton resonances of peptide E7H in H<sub>2</sub>O/D<sub>2</sub>O (90/10, v/v) at 25°C Chemical shift of proton resonance (ppm)

|                      |      |           |           | _           |                                  |
|----------------------|------|-----------|-----------|-------------|----------------------------------|
|                      |      |           |           |             | $-\Delta\delta/\Delta T (ppb/K)$ |
| residue <sup>a</sup> | NH   | Hα        | Нβ        | others      |                                  |
| $\mathbf{V}^1$       | -    | 3.85      | 2.22      | 1.04        | -                                |
| $G^2$                | 8.68 | 4.06/4.00 |           |             | 6.1                              |
| $V^3$                | 8.29 | 4.43      | 2.05      | 0.99/0.97   | 9.1                              |
| $Hyp^4$              | -    | 4.62      | 2.34/2.08 | γ4.54       | -                                |
|                      |      |           |           | δ 3.93/3.84 |                                  |
| $G^5$                | 8.61 | 3.97      |           |             | 7.7                              |
| $V^6$                | 7.96 | 4.20      | 2.11      | 0.93        | 6.5                              |
| $G^7$                | 8.46 | 3.98      |           |             | 7.4                              |

Table S3: Assignments of proton resonances of peptide E7M in H<sub>2</sub>O/D<sub>2</sub>O (90/10, v/v) at 25°C Chemical shift of proton resonance (ppm)

| residuea       | NH   | Ца        | Цß        | others     | -Δ0/Δ1 (ppb/K) |
|----------------|------|-----------|-----------|------------|----------------|
| lesidue        | 1111 | 110       | IIP       | others     |                |
| $\mathbf{V}^1$ | -    | 3.85      | 2.24      | 1.05       | -              |
| $G^2$          | 8.69 | 4.09/4.00 |           |            | 6.3            |
| $V^3$          | 8.25 | 4.46      | 2.08      | 0.98/0.95  | 9.1            |
| $\mathbf{P}^4$ | -    | 4.42      | 2.32/2.08 | γ          | -              |
|                |      |           |           | δ3.90/3.71 |                |
| $G^5$          | 8.46 | 3.99      |           |            | 7.6            |
| $V^6$          | 7.96 | 4.19      | 2.11      | 0.95       | 6.8            |
| $G^7$          | 8.48 | 3.99      |           |            | 7.5            |

| _                    |      |           |      |             | -                                        |
|----------------------|------|-----------|------|-------------|------------------------------------------|
| residue <sup>a</sup> | NH   | Нα        | Нβ   | others      | $-\Delta\delta/\Delta T \text{ (ppb/K)}$ |
| $\mathbf{V}^1$       | -    | 3.79      | 2.24 | 1.07        | _                                        |
| $G^2$                | 8.19 | 4.17/3.87 |      |             | 5.9                                      |
| $V^3$                | 7.72 | 4.50      | 2.05 | 1.00/0.97   | 8.3                                      |
| $\mathbf{P}^4$       | -    | 4.35      |      | γ           | -                                        |
|                      |      |           |      | δ 3.89/3.70 |                                          |
| $G^5$                | 8.02 | 4.16/3.73 |      |             | 8.9                                      |
| $V^6$                | 7.64 | 4.22      | 2.10 | 0.97/0.92   | 4.6                                      |
| $G^7$                | 8.00 | 4.00      |      |             | 7.5                                      |
|                      |      |           |      |             |                                          |

Table S4: Assignments of proton resonances of peptide E7P in TFE-<sub>d3</sub>/H<sub>2</sub>O (80/20, v/v) at 25°C Chemical shift of proton resonance (ppm)

Table S5: Assignments of proton resonances of peptide E7H in TFE-<sub>d3/</sub>H<sub>2</sub>O (80/20, v/v) at 25°C Chemical shift of proton resonance (npm)

| -                    | Che  | _         |           |             |                                          |
|----------------------|------|-----------|-----------|-------------|------------------------------------------|
|                      |      |           |           |             | $-\Delta\delta/\Delta T \text{ (ppb/K)}$ |
| residue <sup>a</sup> | NH   | Нα        | Нβ        | others      |                                          |
| $\mathbf{V}^1$       | -    | 3.80      | 2.2       | 1.06        | -                                        |
| $G^2$                | 8.26 | 4.20/3.70 |           |             | 6.6                                      |
| $V^3$                | 7.90 | 4.40      | 2.02      | 0.97        | 9.6                                      |
| $\mathbf{P}^4$       | -    | 4.53      | 2.34/2.16 | γ4.61       | -                                        |
|                      |      |           |           | δ 4.05/3.81 |                                          |
| $G^5$                | 8.24 | 4.26/3.85 |           |             | 8.9                                      |
| $V^6$                | 7.72 | 4.24      | 2.09      | 0.98/0.92   | 5.1                                      |
| $G^7$                | 8.01 | 4.05/3.96 |           |             | 8                                        |

Table S6: Assignments of proton resonances of peptide E7M in TFE-<sub>d3</sub>/H<sub>2</sub>O (80/20, v/v) at 25°C Chemical shift of proton resonance (ppm)

|                      |      |           |           | _                      |                                          |
|----------------------|------|-----------|-----------|------------------------|------------------------------------------|
|                      |      |           |           |                        | $-\Delta\delta/\Delta T \text{ (ppb/K)}$ |
| residue <sup>a</sup> | NH   | Ηα        | Hβ        | others                 |                                          |
| $\mathbf{V}^1$       | -    | 3.79      | 2.24      | 1.07                   | -                                        |
| $G^2$                | 8.19 | 4.21/3.88 |           |                        | 5.5                                      |
| $V^3$                | 7.84 | 4.42      | 2.06      | 1.01                   | 8.5                                      |
| $Mop^4$              | -    | 4.42      | 2.45/2.09 | γ4.16                  | -                                        |
|                      |      |           |           | δ4.14/3.79             |                                          |
|                      |      |           |           | CH <sub>3</sub> O 3.38 |                                          |
| $G^5$                | 8.22 | 4.23/3.72 |           |                        | 8.2                                      |
| $V^6$                | 7.70 | 4.23      | 2.13      | 1.00/0.95              | 4.3                                      |
| G <sup>7</sup>       | 8.01 | 4.06/3.99 |           |                        | 7.3                                      |

| MAGLTAAAPR <sup>10</sup> PGVLLLLLSI <sup>20</sup> LF                 | IPSRP GVP <sup>30</sup> GAIPGGV<br><i>Exon 2</i>                         | PGG <sup>40</sup> VFYP GAGL0<br><i>Exon</i> .   | GA <sup>50</sup> LGG   GA<br><b>3 Ex</b>  | ALGPGG <sup>60</sup>                          |
|----------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|-----------------------------------------------|
| KPLKPV PGGL <sup>70</sup> AGAGLGA GLG<br><i>Exon 5</i>               | <sup>80</sup> AFPAVTFPGA <sup>90</sup> LVPG<br><i>Exon 6</i>             | GVADAA <sup>100</sup> AAYKA                     | AKA   GA <sup>110</sup> G<br><i>Exon</i>  | LGG <u><i>VPGVG</i></u> G <sup>120</sup><br>7 |
| LGVSA   GAVVP <sup>130</sup> QPGAGVKPGK<br><i>Exon 8</i>             | ( <sup>140</sup> <u>VP   GVG</u> LPGVY <sup>150</sup> P<br><i>Exon 9</i> | GGVLPGA RF <sup>160</sup> PG<br><i>E</i>        | iVGVLPGVP <sup>17</sup><br>Exon 10        | <sup>0</sup> TGAGVKPKAP <sup>180</sup>        |
| GVGGAFAGIP <sup>190</sup>   GVGPFGGPQP<br>Exon 11 Exon 12            | 2 <sup>200</sup> GVPLGYPIKA <sup>210</sup> PKLI<br>2                     | P GGYGLP <sup>220</sup> YTTGH<br><i>Exon 13</i> | (LPY   GY <sup>230</sup> G<br><i>Exon</i> | PGGVAGAAG <sup>240</sup><br><b>14</b>         |
| KAGYPTGT GV <sup>250</sup> GPQAAAAAA<br><i>Exon 15</i>               | A <sup>260</sup> KAAAKF   GAGA <sup>270</sup> A<br><i>Exon 16</i>        | GVLPGVGGA <sup>280</sup> GV                     | PGVPGAIP <sup>290</sup>                   | <sup>9</sup> GIGGIA   GVGT <sup>300</sup>     |
| PAAAAAAAAA <sup>310</sup> AKAAKY   GAAA<br><i>Exon 17 Exor</i>       | A <sup>320</sup> GLVPGGPGFG <sup>330</sup> PG<br>1                       | GVVGVPGAG <sup>340</sup> <u>VPG</u>             | <b>ivg</b> vpgag <sup>350</sup>           | <sup>0</sup> IPVVPGAGIP <sup>360</sup>        |
| GAAVP GVVSP <sup>370</sup> EAAAKAAAKA<br><i>Exon 19</i>              | <sup>380</sup> AKY   GARPGVG <sup>390</sup> V<br><i>Exon 20</i>          | GGIPTYGVG <sup>400</sup> AGG                    | GFPGFGVG <sup>410</sup>                   | VGGIPGVAG <u>V<sup>420</sup></u>              |
| <u>PGVG</u> G <b>VPGVG</b> <sup>430</sup> G <b>VPGVG</b> IS   PE     | 2 <sup>440</sup> AQAAAAAKAA <sup>450</sup> KY<br><i>Exon 21</i>          | GAAGAGVL <sup>460</sup> GG<br><i>Exon 22</i>    | LVPGPQAA47                                | <sup>70</sup> VPGVP GTGGV <sup>480</sup>      |
| PGVGTPAAAA <sup>₄90</sup> AKAAAKAAQF⁵<br><b>Exon 23</b>              | <sup>00</sup>  GL <u>VPGVG</u> VAP <sup>510</sup> GV<br><i>Exon 24</i>   | /GVAPGVGV <sup>520</sup> APG                    | SVGLAPGV <sup>530</sup>                   | GVAPGVGVAP <sup>540</sup>                     |
| GVGVAPGI   GP <sup>550</sup> GGVAAAAKSA<br><i>Exon 25</i>            | <sup>560</sup> AKVAAKAQL   R <sup>570</sup> AA<br><b>Exon</b> A          | AAGLGAGIP <sup>580</sup> GLG`<br><b>26</b>      | VGVGVPG <sup>590</sup>                    | LGVGAGVPGL <sup>600</sup>                     |
| GVGAGVPGFG <sup>610</sup> A   GADEGVRR<br><i>Exon 2</i>              | S <sup>620</sup> LSPELREGDP <sup>630</sup> SSS<br><b>6A</b>              | QHLPSTP <sup>640</sup> SSPRV                    | PGALA <sup>650</sup> AA<br><b>Exc</b>     | NKAAKY GAA <sup>660</sup><br>27               |
| VPGVLGGLGA <sup>670</sup> LGGVGIPGGV <sup>68</sup><br><i>Exon 28</i> | <sup>30</sup> V   GAGPAAAA <sup>690</sup> AA<br><i>Exon 29</i>           | KAAAKAAQ <sup>700</sup> F GI<br><i>E</i>        | LVGAAGLG <sup>710</sup><br>Exon 30        | GLGVGGLG <u>VP</u> <sup>720</sup>             |
| <u>GVG</u> GLG GIPP <sup>730</sup> AAAAKAAKY <br><i>Exon 31</i>      | G <sup>740</sup> AAGLGGVLGG <sup>750</sup> A<br><i>Exon 32</i>           | GQFPLG GVA <sup>760</sup> AR<br><i>Exon 33</i>  | RPGFGLSPI <sup>780</sup>                  | FP GGACLGKA<br><i>Exon 36</i>                 |
| CGRKRK                                                               |                                                                          |                                                 |                                           |                                               |

Figure S1: Human tropoelastin protein sequence (Swiss Prot. Accession number P15502). -VPGVG- sequences are underlined.



Figure S2: a) CD spectra of E7P peptide recorded at variable temperatures from 0 to 70°C, with a 10° C increment. b) Van't Hoff plot constructed from CD data at 198 nm of E7P recorded in water at different temperatures. The data were fitted to a two state model. By sing the fitted endpoints of the transition, a linear Van't Hoff plot is obtained, which allowed the calculation of the enthalpy change  $\Delta$ H°, the entropy change  $\Delta$ S°, and the transition temperature Tm of the conformational transition from the slope, the intercept and the  $\Delta$ H°/ $\Delta$ S° values, respectively. The linear correlation coefficient is r = -0.98.



Figure S3: a) CD spectra of E7H peptide recorded at variable temperatures from 0 to 70°C, with a 10° C increment. b) Van't Hoff plot constructed from CD data at 198 nm of E7H recorded in water at different temperatures. The data were fitted to a two state model. By sing the fitted endpoints of the transition, a linear Van't Hoff plot is obtained, which allowed the calculation of the enthalpy change  $\Delta$ H°, the entropy change  $\Delta$ S°, and the transition temperature Tm of the conformational transition from the slope, the intercept and the  $\Delta$ H°/ $\Delta$ S° values, respectively. The linear correlation coefficient is r = -0.99.



Figure S4: a) CD spectra of E7M peptide recorded at variable temperatures from 0 to 70°C, with a 10° C increment. b) Van't Hoff plot constructed from CD data at 198 nm of E7M recorded in water at different temperatures. The data were fitted to a two state model. By sing the fitted endpoints of the transition, a linear Van't Hoff plot is obtained, which allowed the calculation of the enthalpy change  $\Delta$ H°, the entropy change  $\Delta$ S°, and the transition temperature Tm of the conformational transition from the slope, the intercept and the  $\Delta$ H°/ $\Delta$ S° values, respectively. The linear correlation coefficient is r = -0.99.