Supplementary Information for:

Expanded Combinatorial Formation of Porphyrin Macrocycles in Aqueous Solution Containing Vesicles. A Prebiotic Model

Ana R. M. Soares, Masahiko Taniguchi, Vanampally Chandrashaker, and Jonathan S. Lindsey

Table of Contents

Section	Торіс	Page
I.	ESI-MS data for porphyrins derived from pairwise reactions	S2
II.	Chemical oxidation vs aerobic photooxidation of the [4 x 4] reaction	S 3
III.	Molecular formulas of products of the [4 x 4] reaction	S4-5
IV.	Contour plots for amphiphilic porphyrins	S6-7
V.	[2 x 2] Combinatorial reaction at various Wand G ratios	S 7

I. ESI-MS data for porphyrins derived from pairwise reactions. Table S1. ESI-MS data of each pairwise reaction following chemical oxidation with I₂.

Entry	Dione	Aminoketone	Porphyrin	<i>m/z</i> obsd	Formula (M + H)	m/z calcd $(M + H)^+$	ΔM (ppm)
1	1-AcOH	2-PrOH	(AcOH/PrOH) ₄ Por	831.2350 ^{<i>a</i>}	$C_{40}H_{39}N_4O_{16}$	831.2356	0.72
2	1-AcOH	2-BuOH	(AcOH/BuOH) ₄ Por	887.2976	$C_{44}H_{47}N_4O_{16}$	887.2982	0.55
3	1-PentOH	2-PrOH	(PentOH/PrOH) ₄ Por	999.4230	$C_{52}H_{63}N_4O_{16}$	999.4234	0.32
4	1-PentOH	2-BuOH	(PentOH/BuOH) ₄ Por	1055.4856	$C_{56}H_{71}N_4O_{16}$	1055.4860	0.10
5	1-AcOH	2-Et	(AcOH/Et) ₄ Por	655.2758 ^b	$C_{36}H_{39}N_4O_8$	655.2762	0.61
6	1-AcOH	2-Pr	(AcOH/Pr) ₄ Por	711.3389	$C_{40}H_{47}N_4O_8$	711.3388	0.05
7	1-PentOH	2-Et	(PentOH/Et) ₄ Por	823.4639	$C_{48}H_{63}N_4O_8$	823.4640	0.29
8	1-PentOH	2-Pr	(PentOH/Pr) ₄ Por	879.5266	$C_{52}H_{71}N_4O_8$	879.5266	-0.19
9	1-Me	2-PrOH	(Me/PrOH) ₄ Por	655.2756 ^a	$C_{36}H_{39}N_4O_8$	655.2762	0.92
10	1-Me	2-BuOH	(Me/BuOH) ₄ Por	711.3376	$C_{40}H_{47}N_4O_8$	711.3388	1.75
11	1-Hex	2-PrOH	(Hex/PrOH) ₄ Por	935.5891	$C_{56}H_{79}N_4O_8$	935.5892	0.18
12	1-Hex	2-BuOH	(Hex/BuOH) ₄ Por	991.6547	$C_{60}H_{87}N_4O_8$	991.6518	-1.85
13	1-Me	2-Et	(Me/Et) ₄ Por	479.3192 ^b	C ₃₂ H ₃₉ N ₄	479.3169	-4.80
14	1-Me	2-Pr	(Me/Pr) ₄ Por	535.3787	C ₃₆ H ₄₇ N ₄	535.3795	1.59
15	1-Hex	2-Et	(Hex/Et) ₄ Por	759.6299	C ₅₂ H ₇₉ N ₄	759.6299	-0.21
16	1-Hex	2-Pr	(Hex/Pr) ₄ Por	815.6944	$C_{56}H_{87}N_4$	815.6925	-2.31

^{*a*} Ref. 38. ^{*b*} Ref. 40.

II. Chemical oxidation vs aerobic photooxidation of the [4 x 4] reaction.

The absorption and fluorescence spectra of the crude mixture of the $[4 \times 4]$ reaction either upon chemical oxidation or aerobic photooxidation are shown in Figure S1 for comparison.

Figure S1. Absorption (panel A) and fluorescence emission (panel B) spectra of the crude mixture of the [4 x 4] reaction following aerobic photooxidation (black) or I₂ oxidation (green). Spectra were acquired in 0.1 M potassium phosphate buffer (pH 7).

III. Molecular formulas of products of [4 x 4] reaction.

The $[4 \times 4]$ reaction affords only 205 distinct molecular formulas, which are displayed in Table S2.

Table S2. Distinct molecular formulas from the [4 x 4] combinatorial reaction of four diones (1-Me, 1-Hex, 1-AcOH, 1-PentOH) and four aminoketones (2-Et, 2-Pr, 2-PrOH, 2-BuOH).

Molecular	m/z (calcd)	Molecular	m/z (calcd)	Molecular	m/z (calcd)	
formula		formula		formula		
$C_{32}H_{38}N_4$	478.3096	$C_{38}H_{38}N_4O_{12}$	742.2486	$C_{47}H_{56}N_4O_{12}$	868.3895	
$C_{33}H_{40}N_4$	492.3253	$C_{51}H_{76}N_4$	744.6070	$C_{45}H_{50}N_4O_{14}$	870.3324	
$C_{34}H_{42}N_4$	506.3409	$C_{49}H_{70}N_4O_2$	746.5499	$C_{43}H_{44}N_4O_{16}$	872.2752	
C ₃₅ H ₄₄ N ₄	520.3566	$C_{47}H_{64}N_4O_4$	748.4928	$C_{56}H_{82}N_4O_4$	874.6336	
$C_{33}H_{38}N_4O_2$	522.2995	$C_{45}H_{58}N_4O_6$	750.4356	$C_{54}H_{76}N_4O_6$	876.5765	
$C_{36}H_{46}N_4$	534.3722	$C_{43}H_{52}N_4O_8$	752.3785	$C_{52}H_{70}N_4O_8$	878.5194	
$C_{34}H_{40}N_4O_2$	536.3151	$C_{41}H_{46}N_4O_{10}$	754.3214	$C_{50}H_{64}N_4O_{10}$	880.4622	
$C_{37}H_{48}N_4$	548.3879	$C_{39}H_{40}N_4O_{12}$	756.2643	$C_{48}H_{58}N_4O_{12}$	882.4051	
$C_{35}H_{42}N_4O_2$	550.3308	$C_{52}H_{78}N_4$	758.6226	$C_{46}H_{52}N_4O_{14}$	884.3480	
$C_{38}H_{50}N_4$	562.4035	$C_{50}H_{72}N_4O_2$	760.5655	$C_{44}H_{46}N_4O_{16}$	886.2909	
$C_{36}H_{44}N_4O_2$	564.3464	$C_{48}H_{66}N_4O_4$	762.5084	$C_{57}H_{84}N_4O_4$	888.6493	
C ₃₄ H ₃₈ N ₄ O ₄	566.2893	$C_{46}H_{60}N_4O_6$	764.4513	C55H78N4O6	890.5921	
$C_{39}H_{52}N_4$	576.4192	$C_{44}H_{54}N_4O_8$	766.3942	$C_{53}H_{72}N_4O_8$	892.5350	
$C_{37}H_{46}N_4O_2$	578.3621	$C_{42}H_{48}N_4O_{10}$	768.3370	$C_{51}H_{66}N_4O_{10}$	894.4779	
C ₃₅ H ₄₀ N ₄ O ₄	580.3050	$C_{40}H_{42}N_4O_{12}$	770.2799	$C_{49}H_{60}N_4O_{12}$	896.4208	
C40H54N4	590.4348	C53H80N4	772.6383	$C_{47}H_{54}N_4O_{14}$	898.3637	
C ₃₈ H ₄₈ N ₄ O ₂	592.3777	C ₅₁ H ₇₄ N ₄ O ₂	774.5812	C ₄₅ H ₄₈ N ₄ O ₁₆	900.3065	
C ₃₆ H ₄₂ N ₄ O ₄	594.3206	$C_{49}H_{68}N_4O_4$	776.5241	C ₅₈ H ₈₆ N ₄ O ₄	902.6649	
C ₄₁ H ₅₆ N ₄	604.4505	$C_{47}H_{62}N_4O_6$	778.4669	C ₅₆ H ₈₀ N ₄ O ₆	904.6078	
$C_{39}H_{50}N_4O_2$	606.3934	$C_{45}H_{56}N_4O_8$	780.4098	$C_{54}H_{74}N_4O_8$	906.5507	
C ₃₇ H ₄₄ N ₄ O ₄	608.3363	$C_{43}H_{50}N_4O_{10}$	782.3527	C ₅₂ H ₆₈ N ₄ O ₁₀	908.4935	
$C_{35}H_{38}N_4O_6$	610.2791	$C_{41}H_{44}N_4O_{12}$	784.2956	$C_{50}H_{62}N_4O_{12}$	910.4364	
$C_{42}H_{58}N_4$	618.4661	$C_{39}H_{38}N_4O_{14}$	786.2385	$C_{48}H_{56}N_4O_{14}$	912.3793	
$C_{40}H_{52}N_4O_2$	620.4090	$C_{54}H_{82}N_4$	786.6539	$C_{46}H_{50}N_4O_{16}$	914.3222	
$C_{38}H_{46}N_4O_4$	622.3519	$C_{52}H_{76}N_4O_2$	788.5968	$C_{57}H_{82}N_4O_6$	918.6234	
C ₃₆ H ₄₀ N ₄ O ₆	624.2948	C ₅₀ H ₇₀ N ₄ O ₄	790.5397	$C_{55}H_{76}N_4O_8$	920.5663	
C43H60N4	632.4818	$C_{48}H_{64}N_4O_6$	792.4826	C53H70N4O10	922.5092	
$C_{41}H_{54}N_4O_2$	634.4247	$C_{46}H_{58}N_4O_8$	794.4255	$C_{51}H_{64}N_4O_{12}$	924.4521	
$C_{39}H_{48}N_4O_4$	636.3676	$C_{44}H_{52}N_4O_{10}$	796.3683	$C_{49}H_{58}N_4O_{14}$	926.3950	
$C_{37}H_{42}N_4O_6$	638.3104	$C_{42}H_{46}N_4O_{12}$	798.3112	$C_{47}H_{52}N_4O_{16}$	928.3378	
C44H62N4	646.4974	$C_{40}H_{40}N_4O_{14}$	800.2541	$C_{58}H_{84}N_4O_6$	932.6391	
$C_{42}H_{56}N_4O_2$	648.4403	$C_{55}H_{84}N_4$	800.6696	$C_{56}H_{78}N_4O_8$	934.5820	
$C_{40}H_{50}N_4O_4$	650.3832	$C_{53}H_{78}N_4O_2$	802.6125	$C_{54}H_{72}N_4O_{10}$	936.5248	
C ₃₈ H ₄₄ N ₄ O ₆	652.3261	$C_{51}H_{72}N_4O_4$	804.5554	$C_{52}H_{66}N_4O_{12}$	938.4677	
$C_{36}H_{38}N_4O_8$	654.2690	$C_{49}H_{66}N_4O_6$	806.4982	$C_{50}H_{60}N_4O_{14}$	940.4106	
$C_{45}H_{64}N_4$	660.5131	$C_{47}H_{60}N_4O_8$	808.4411	$C_{48}H_{54}N_4O_{16}$	942.3535	
$C_{43}H_{58}N_4O_2$	662.4560	$C_{45}H_{54}N_4O_{10}$	810.3840	$C_{59}H_{86}N_4O_6$	946.6547	
$C_{41}H_{52}N_4O_4$	664.3989	$C_{43}H_{48}N_4O_{12}$	812.3269	$C_{57}H_{80}N_4O_8$	948.5976	

C ₃₉ H ₄₆ N ₄ O ₆	666.3417	$C_{41}H_{42}N_4O_{14}$	814.2698	$C_{55}H_{74}N_4O_{10}$	950.5405
$C_{37}H_{40}N_4O_8$	668.2846	$C_{56}H_{86}N_4$	814.6852	$C_{53}H_{68}N_4O_{12}$	952.4834
C46H66N4	674.5287	$C_{54}H_{80}N_4O_2$	816.6281	$C_{51}H_{62}N_4O_{14}$	954.4263
$C_{44}H_{60}N_4O_2$	676.4716	$C_{52}H_{74}N_4O_4$	818.5710	C ₄₉ H ₅₆ N ₄ O ₁₆	956.3691
$C_{42}H_{54}N_4O_4$	678.4145	C50H68N4O6	820.5139	$C_{58}H_{82}N_4O_8$	962.6133
C40H48N4O6	680.3574	$C_{48}H_{62}N_4O_8$	822.4568	C ₅₆ H ₇₆ N ₄ O ₁₀	964.5561
$C_{38}H_{42}N_4O_8$	682.3003	$C_{46}H_{56}N_4O_{10}$	824.3996	$C_{54}H_{70}N_4O_{12}$	966.4990
C47H68N4	688.5444	$C_{44}H_{50}N_4O_{12}$	826.3425	$C_{52}H_{64}N_4O_{14}$	968.4419
$C_{45}H_{62}N_4O_2$	690.4873	$C_{42}H_{44}N_4O_{14}$	828.2854	C ₅₀ H ₅₈ N ₄ O ₁₆	970.3848
C43H56N4O4	692.4302	$C_{40}H_{38}N_4O_{16}$	830.2283	$C_{59}H_{84}N_4O_8$	976.6289
C ₄₁ H ₅₀ N ₄ O ₆	694.3730	$C_{55}H_{82}N_4O_2$	830.6438	$C_{57}H_{78}N_4O_{10}$	978.5718
$C_{39}H_{44}N_4O_8$	696.3159	$C_{53}H_{76}N_4O_4$	832.5867	$C_{55}H_{72}N_4O_{12}$	980.5147
C ₃₇ H ₃₈ N ₄ O ₁₀	698.2588	$C_{51}H_{70}N_4O_6$	834.5295	C ₅₃ H ₆₆ N ₄ O ₁₄	982.4576
C ₄₈ H ₇₀ N ₄	702.5600	C49H64N4O8	836.4724	C ₅₁ H ₆₀ N ₄ O ₁₆	984.4004
$C_{46}H_{64}N_4O_2$	704.5029	$C_{47}H_{58}N_4O_{10}$	838.4153	$C_{60}H_{86}N_4O_8$	990.6446
C44H58N4O4	706.4458	$C_{45}H_{52}N_4O_{12}$	840.3582	C ₅₈ H ₈₀ N ₄ O ₁₀	992.5874
$C_{42}H_{52}N_4O_6$	708.3887	$C_{43}H_{46}N_4O_{14}$	842.3011	$C_{56}H_{74}N_4O_{12}$	994.5303
$C_{40}H_{46}N_4O_8$	710.3316	$C_{41}H_{40}N_4O_{16}$	844.2439	$C_{54}H_{68}N_4O_{14}$	996.4732
$C_{38}H_{40}N_4O_{10}$	712.2744	$C_{56}H_{84}N_4O_2$	844.6594	$C_{52}H_{62}N_4O_{16}$	998.4161
$C_{49}H_{72}N_4$	716.5757	$C_{54}H_{78}N_4O_4$	846.6023	$C_{59}H_{82}N_4O_{10}$	1006.6031
C47H66N4O2	718.5186	$C_{52}H_{72}N_4O_6$	848.5452	$C_{57}H_{76}N_4O_{12}$	1008.5460
$C_{45}H_{60}N_4O_4$	720.4615	$C_{50}H_{66}N_4O_8$	850.4881	$C_{55}H_{70}N_4O_{14}$	1010.4889
$C_{43}H_{54}N_4O_6$	722.4043	$C_{48}H_{60}N_4O_{10}$	852.4309	$C_{53}H_{64}N_4O_{16}$	1012.4317
$C_{41}H_{48}N_4O_8$	724.3472	$C_{46}H_{54}N_4O_{12}$	854.3738	$C_{58}H_{78}N_4O_{12}$	1022.5616
$C_{39}H_{42}N_4O_{10}$	726.2901	$C_{44}H_{48}N_4O_{14}$	856.3167	$C_{56}H_{72}N_4O_{14}$	1024.5045
$C_{50}H_{74}N_4$	730.5913	$C_{42}H_{42}N_4O_{16}$	858.2596	$C_{54}H_{66}N_4O_{16}$	1026.4474
$C_{48}H_{68}N_4O_2$	732.5342	$C_{57}H_{86}N_4O_2$	858.6751	$C_{57}H_{74}N_4O_{14}$	1038.5202
C46H62N4O4	734.4771	$C_{55}H_{80}N_4O_4$	860.6180	$C_{55}H_{68}N_4O_{16}$	1040.4630
$C_{44}H_{56}N_4O_6$	736.4200	$C_{53}H_{74}N_4O_6$	862.5608	$C_{56}H_{70}N_4O_{16}$	1054.4787
$C_{42}H_{50}N_4O_8$	738.3629	$C_{51}H_{68}\overline{N_4O_8}$	864.5037		
$C_{40}H_{44}N_4O_{10}$	740.3057	$C_{49}H_{62}N_4O_{10}$	866.4466		

IV. Contour plots for amphiphilic porphyrins.

Figure S2. Relative amount of given types of amphiphilic porphyrins as a function of percentage of W or G substituents in the two pools of reactants (diones, aminoketones). The sum of the five individual contour plots gives the composite plot shown in the upper left corner of the figure in the text.

The individual contour plots for the five types of amphiphilic porphyrins are shown in Figure S2. The five types of amphiphilic porphyrins are as follows: G_6W_2 (GG-GG-GG-WW-, GG-GG-GW-WG-), G_5W_3 (GG-GG-GW-WW-), G_4W_4 (GG-GG-WW-WW-, GG-GW-WW-WW-WG-), G_3W_5 (GG-GW-WW-WW-), and G_2W_6 (GG-WW-WW-WW-, GW-WW-WG-).

V. [2 x 2] Combinatorial reaction at various W and G ratios.

To study the effect of substituent polarity in combinatorial reactions, a $[2 \times 2]$ reaction of two diones (1-Me and 1-AcOH) and two aminoketones (2-Et and 2-PrOH) was carried out employing various ratios of W and G substituents. The reaction was performed in aqueous solution at 60 mM (60 mM for each pool of reactants) in the presence of SDS. The volumes of each constituent of the reaction mixture are listed in Table S3.

Volume (µL) Entry $\chi_{\rm W}$ 1-Me 1-AcOH **2-Et** 2-PrOH SDS Buffer Water (0.5 M)(0.5 M)(0.5 M)(0.5 M)(0.5 M)(0.5 M)0.2 0.4 0.5 0.5 0.5 0.6 0.8

Table S3. Volume of each constituent of the $[2 \times 2]$ reaction for various W and G ratios.^{*a*}

^{*a*}60 mM for each pool of reactants.