Electronic Supplementary Information (ESI) for

Hierarchically porous AIPO-5-based microspheres as heterogeneous catalysts for synthesis of 5-substituted 1H-tetrazoles via [3+2] cycloaddition

Dan Kong,^a Yanyan Liu,^a Juan Zhang,^a Hongbian Li,^b Xiangyu Wang,^{*,a} Guangyu Liu,^{a,c} Baojun Li^{*,a} and Zheng Xu^d

^a Institute of Industrial Catalysis, College of Chemistry and Molecular Engineering, Zhengzhou

University, 100 Science Road, Zhengzhou 450001, P R China

^b National Center for Nanoscience and Technology, 11 Beiyitiao Street, Zhongguancun, Beijing 100190, P R China

^c School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P R China ^d State Key Laboratory of Coordination Chemistry and Nanjing National Laboratory of

Microstructure, Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing

210093. P R China

*Corresponding author. E-mail: lbjfcl@zzu.edu.cn and xiangyuwang@zzu.edu.cn

Table S1. Unit cell parameters for AlPO-5 and WAlPO-5.

Sample	a=b (Å)	C (Å)	V (Å ³)	ΔV (Å ³)
AlPO-5	13.70	8.41	1367.20	~
WAlPO-5	13.72	8.40	1369.40	2.20

V: unit cell volume, ΔV : unit cell volume change

Table S2. The location of FTIR absorption peaks calcined micropore aluminophosphates.

Sample	1 (cm ⁻¹)	2 (cm ⁻¹)	3 (cm ⁻¹)	4 (cm ⁻¹)	5 (cm ⁻¹)
AlPO-5	466.17	635.99	706.52	1128.09	1650.78
WAlPO-5	467.89	637.44	704.53	1113.68	1644.62

Table S3. The molar ratio of P, Al and W calculated from ICP results.

Sample	X ^a	Y ^a	Z ^a
WAlPO-5 (gel)	0.488	0.488	0.024
WAIPO-5 (solid)	0.497	0.502	0.001
WAII 0-5 (Solid)	0.497	0:302	0.001

^a The mole ratio:X=P/(P+Al+W), Y=Al/(P+Al+W), Z=W/(P+Al+W).

Table S4. Nitrogen sorption results of AlPO-5 and WAlPO-5.

Sample	S _{BET} (m ² g ⁻¹)	V _P (cm ³ g ⁻¹)	$D_P{}^D(nm)^a$
AlPO-5	229.5	0.20	1.8
WAIPO-5	245.4	0.21	1.7

^a Pore diameter from desorption branch of isotherms.

Entry	Solvent	NaN ₃ (mmol)	T (°C)	Yield (%)	
1	DMF	5.3	100	87	
2	DMF	2.6	120	19, 34	
3	DMF	5.3	120	65 ^b , 92 ^c	
4	DMF	5.3	130	40	
5	water	5.3	100	2	
6	toluene	5.3	120	0	
7	DMSO	5.3	120	71	
8	NMP	5.3	120	82	
9	DMF/H ₂ O (1/1)	5.3	120	32	
10	SC CO ₂ +DMF	5.3	120	34 ^d	
11	SC CO ₂ +DMF	5.3	120	31°	

Table S5. Formation of 5-phenyltetrazole using various reaction parameters^a.

^a *Reaction conditions*: benzonitrile (2.5 mmol), NaN₃ (2.6-5.3 mmol) and catalyst (0.26-0.78 mmol) in DMF (5mL) at 120 °C for 24 h.

^b Reaction carried at 120 °C for 12 h.

^c Reaction carried at 120 °C for 24 h.

Figure S1. (a) XRD pattern and (b) FTIR spectrum of used WAIPO-5 microspheres.

Figure S2. (a) ¹H NMR spectrum of 5-phenyltetrazole and (b) the fine structure between 7.56-8.10 ppm.

Figure S3. MS spectrum of (a) crude and (b) purified 5-phenyltetrazole synthesized from benzonitrile and sodium azide.