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1. Instruments and Methods

1-1. TGA Experiment.

The thermogravimetric analysis (TGA) was performed using a SHIMADZU DTG-60
thermal analyzer system at the heating rate of 10 °C min™ to 800 °C in the dried air
atmosphere and the air flow rate was 30 mL min™. The sample was loaded in alumina
pan.

1-2. FT-IR Experiment.

The FTIR spectra (KBr, Aldrich) were measured using a BRUKER VERTEX 80V
Fourier transform infrared spectrometer. Samples were packed firmly to get transparent
films. Measurements were carried out under vacuum to decrease the interference of
moisture.

1-3. Elemental Analysis.

Elemental analysis was performed using an Elementar Vario EL cube.

1-4. PXRD Experiment.

PXRD measurements were performed using a SHIMADZU XRD-6000 X-ray
diffractometer using Cu-Ka radiation, 40 kV, 30 mA with a scanning rate of 0.15° min’!
(29).

1-5. SEM and EDS analysis.
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The sample was prepared by dispersing the material onto a sticky carbon surface
attached to a flat aluminum sample holder. Scanning electron microscopy (SEM) was
performed on an FEI Quanta 400 Thermal FE Environment Scanning Electron
Microscope and energy dispersive spectrometer (EDS) analysis was performed on a
JEOS JSM 6700.

1-6. 'H NMR and ">C CP-MAS NMR analysis.

We use a BRUKER NMR (400 MHz) to perform '"H NMR of products of catalytic
reaction. Solid state NMR spectroscopy experiment was carried out at 9.4 T with a
Varian Infinity plus-400 spectrometer, equipped with a Chemagnetic triple-resonance
7.5 mm probe, with resonance frequencies of 100.6 and 161.9 MHz for >C. The MAS
rate was set to 3—5 kHz. For the 'H-"C cross-polarization (CP)/MAS NMR experiments,
the Hartmann—Hahn condition was achieved using hexamethylbenzene (HMB), with a
contact time of 2.0 ms and a repetition time of 2.0 s.

1-7. Low-pressure N, Sorption measurements.

Nitrogen sorption experiments were performed at 77 K up to 1 bar using a Micro
Meritics Tristar II 3020 surface area and pore size analyzer. Before sorption analysis,
the sample was evacuated at 150 °C for 10 h using a turbo molecular vacuum pump.

Specific surface areas were calculated from nitrogen adsorption data by multipoint BET
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analysis. Pore size distributions were calculated from the N, adsorption isotherms using

non-local density functional theory (NLDFT) method.

1-8. Low-pressure H;, CO; and CH, Sorption measurements.

Low-pressure Hy, CO, and CH4 sorption was measured using a Micro Meritics Tristar

IT 3020 surface area and pore size analyzer. Ultra-high-purity grade H,, CO; (99.999%)

and CHy gases (99.99%) were used for all adsorption measurements. Free space was

measured using helium (99.999%), assuming that the helium is not adsorbed at any of

the studied temperatures. H; isotherms at 77 K were measured in a liquid nitrogen bath,

H,; isotherms at 87 K were measured in the liquid argon bath, CO, and CH, isotherms at

273 K were measured in an ice-water bath. To provide high accuracy and precision on

determining the relative pressure (P/Py), the vapor pressure for each data point was

monitored throughout the gas sorption analyses.

1-9. HPLC analysis

To analyze the conversion of substrate, part of the mixture was filtered out and the

filtration was prepared to be solution for test. Here we use a SHIMADZU LC-10 HPLC

with wave length 254 nm.
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2. Investigation of Structure of JUC-Z12

2-1. TGA Experiment
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Fig. SI TGA plot of JUC-Z12 under dry air with the rate of 10 °C min™",
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2-2. FT-IR of JUC-Z12
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Fig. S§2 FT-IR spectra of JUC-Z12.
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2-3. PXRD of JUC-Z12
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Fig. §3 PXRD pattern of JUC-Z12.

S8



2-4. SEM of JUC-Z12

Fig. 4 SEM image of JUC-Z12.
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2-5. EDS of JUC-Z12
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O 0.525 6.31 2.4 5.24
Total 100.00 100.00
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Fig. $5 EDS result of JUC-Z12.
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2-6. °C CP-MAS NMR of JUC-Z12
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Fig. $6 °C CP-MAS NMR spectrum of JUC-Z12.
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3. Gas Storage

3-1. Investigation of Adsorption of N> (77K)
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Fig. §7 77 K, N, sorption isotherms of JUC-Z12 (solid symbols: adsorption; open
symbols: desorption).
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Fig. $8 BET plot derived from N, adsorption (R* = 0.999934, Sgrr = 750 m? g ™).
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Fig. §9 Pore size distributions derived from N, adsorption by DFT.
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3-2. Investigation of Adsorption of H, (77 K, 87 K)
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Fig. $10 H, adsorption (solid symbols) and desorption (open symbols) isotherms of
JUC-Z12 at 77 K (cycle) and 87 K (square).
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Fig. S11 Qstp of JUC-Z12 as a function of the amount of H, adsorbed.
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3-3. Investigation of Adsorption of CH, (273 K, 298 K)
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Fig. S12 CH,4 adsorption (solid symbols) and desorption (open symbols) isotherms of
JUC-Z12 at 273 K (cycle) and 298 K (square).
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Fig. S13 Qstcus of JUC-Z12 as a function of the amount of CH4 adsorbed.
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3-4. Investigation of Adsorption of CO; (273 K, 298 K)
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Fig. S14 CO, adsorption (solid symbols) and desorption (open symbols) isotherms of
JUC-Z12 at 273 K (cycle) and 298 K (square).
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Fig. S§15 Qstcop of JUC-Z12 as a function of the amount of CO, adsorbed.
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4. Catalytic reactions with JUC-Z12

4-1. "H-NMR of 4-methylbenzaldehyde and 2-(4-methylbenzylidene)malononitrile
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Fig. SI6 'H NMR spectrum of (A)

4-methylbenzaldehyde and (B)
2-(4-methylbenzylidene)malononitrile in CDCls.
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4-2. "H-NMR of benzaldehyde and 2-benzylidenemalononitrile
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Fig. S17 'H NMR spectrum of (A) benzaldehyde and (B) 2-benzylidenemalononitrile in

CDCl.
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4-3. "H-NMR of 4-bromobenzaldehyde and 2-(4-bromobenzylidene)malononitrile
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Fig. SI8 'H NMR spectrum of (A)

4-bromobenzaldehyde and (B)
2-(4-bromobenzylidene)malononitrile in CDCls.
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4-4. "H-NMR of 4-chlorobenzaldehyde and 2-(4-chlorobenzylidene)malononitrile
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Fig. S19 'H NMR spectrum  of (A) 4-chlorobenzaldehyde and (B)
2-(4-chlorobenzylidene)malononitrile in CDCl;.
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4-5. "TH-NMR of 4-methoxybenzaldehyde and
2-(4-methoxybenzylidene)malononitrile
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Fig. S$20 'H NMR spectrum of (A) 4-methoxybenzaldehyde and (B)

2-(4-methoxybenzylidene)malononitrile in CDCls.
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4-6. TH NMR

of 4-hydroxybenzaldehyde and
2-(4-hydroxybenzylidene)malononitrile
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Fig. S21 'H NMR

spectrum of (A) 4-hydroxybenzaldehyde

and (B)
2-(4-hydroxybenzylidene)malononitrile in de-DMSO.
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