Electronic Supplementary Information (ESI)

Multi-core MgO NPs@C core-shell nanospheres for selective CO₂ capture at mild condition

Tae Kyung Kim,^a Kyung Joo Lee,^a Junhan Yuh,^b Sang Kyu Kwak^c and Hoi Ri Moon*^a

^{*a*} Interdisciplinary School of Green Energy and KIER-UNIST Advanced Center for Energy, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 689-798, Republic of Korea. Fax: +82-52-217-2019; Tel: +82-52-217-2928; E-mail: hoirimoon@unist.ac.kr

^bNew Growth Technology Strategy Department, Corporate Technology Division, POSCO POSCO center, Seoul 135-777, Republic of Korea

^c School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 689-798, Republic of Korea.

		before annealing		after annealing	
		BE(eV) ^[a]	RA(%) ^[b]	BE(eV)	RA(%)
Mg 2 <i>p</i>	Mg-C			48.6	50.3
	MgO	49.3	19.4	49.3	49.7
		49.8	20.4		
	MgCp ₂	50.3	2.3	-	-
	Mg(OH) ₂ MgCO ₃	50.6	57.8	-	-
O 1 <i>s</i>	MgO	531.1	35.1	529.1 531.0	31.5 59.5
	Mg(OH) ₂	531.9	39.4	-	-
	MgCO ₃	532.9	25.5	532.8	9.00
C 1 <i>s</i>	graphite	283.8	34.1	283.8	19.3
	Hydrocarbon	284.5	45.6	284.3	35.8
	O=C-O	288.9	20.3	288.5	44.8

Table S1. Summary of XPS results for MgO NPs@C.

[a] binding energy [b] relative area

	Before annealing	After annealing
Mg	10.03	19.89
С	53.43	54.58
Ν	0.03	0.11
Н	4.83	1.31

Table S2. Comparison of the Mg composite (ICP-MS) and elemental analysis for MgO NPs@C before and after annealing treatment.

Fig. S1 Mg 2*p* XPS results of MgO NPs@C (a) before and (b) after annealing.

Fig. S2 C 1s XPS results of MgO NPs@C (a) before and (b) after annealing.

Fig. S3 O 1s XPS results of MgO NPs@C (a) before and (b) after annealing.

Fig. S4 Photograph showing different dispersibility of pure MgO powder and MgO NPs@C in water.

Fig. S5 CO₂ gas sorption cycling result of commercially available 50 nm sized-MgO powder.

Fig. S6 CO₂ gas sorption cycling result of MgO NPs@C under different adsorption temperatu re at 27, 50, 75, 100, 150, and 200 °C.

Fig. S7 CO_2 gas sorption cycling result of inner hollow carbon shell under different adsorptio n temperature at 27, 50, 75, 100, 150, and 200 °C.

Fig. S8 Characterization of the CO₂-adsorbed MgO NPs@C. TGA trace (blue line) and its first derivative curve (red line).