Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supporting Information

Fe-terpyridyl complex based multiple switches for application in molecular logic gate and circuit

Prakash Chandra Mondal,*^{a,b} Vikram Singh*^a and Bhaskaran Shankar^a

^aDepartment of Chemistry, University of Delhi, Delhi – 110 007, India

^bDepartment of Chemical Physics, Weizmann Institute of Science, Rehovot – 76100, Israel

E-mail: mondalpc@gmail.com

Scheme S1: Synthetic scheme for 4'-pyridyl-terpyridine (pytpy).

Fig.S1: ¹H NMR spectrum of 4'-pyridyl terpyridine (pytpy) in CDCl₃.

Scheme S2: Synthetic scheme for preparation of 1.

Fig. S2: ¹H NMR spectrum of **1** in CD₃CN. Charge on the metal center (Fe) is +2.

Fig. S3: (1) Native colour of 1 in dry CH₃CN and (below) corresponding UV-Vis spectrum (¹MLCT) with $\lambda_{max} = 569$ nm; (2) Addition of one eqv. of H⁺ to 1 with colour changing from purple to blue and (below) 'a' represents bathochromic shift of 13 nm to 582 nm and increase in molar absorptivity in ¹MLCT of 1; (3) Addition of another eqv. of H⁺ to 1 changed colour to light blue and (below) 'b' represents changes in the UV-Vis spectrum; (4) Excess of H⁺ could not produce any further changes. Use of Et₃N leads to original state of 1. Black line in the UV-Vis spectra represent baseline with dry CH₃CN.

Fig. S4: Representation of getting back to original state of 1 via stepwise addition of a) 5 μ L of D.I water: Fe(III) to Fe(II); b) two eqv. of NO⁺: shift the λ_{max} to original value of 569 nm.

Fig. S5a: DFT-optimized structures of 1^{2+}

Fig. S5b:DFT-optimized structures of 2³⁺

Fig. S5c:DFT-optimized structures of 3⁴⁺

Fig. S5d: DFT-optimized structures of 4⁵⁺

Table S1

	2+	3+(NO)	4+(NO) ₂	5 ⁺ (NO) ₂
Fe–N2	2.0371	2.0415	2.0420	2.0099
Fe-N1	1.9176	1.9236	1.9267	1.9271
Fe–N6	2.0372	2.0414	2.0421	2.0100
Fe-N5	2.0371	2.0337	2.0420	2.0099
Fe-N4	1.9175	1.9143	1.9265	1.9271
Fe-N3	2.0371	2.0336	2.0421	2.0100
N-NO	-	1.8619	1.9147	2.0438
N–O	-	1.1220	1.1165	1.1054
<0–N…N	-	110.951	111.141	112.360
N-NO	-	-	1.9144	2.0438
N–O	-	-	1.1166	1.1055
<0−N N	-	-	111.097	112.362

Table S2

M.Os	Energy (eV)				
	2+	3+	3+(NO)	4 ⁺ (NO) ₂	
НОМО	-10.94	-12.1	-15.03	-18.52	
LUMO	-7.55	-11.82	-12.95	-14.89	

Fig. S6: Change in UV-Vis spectra of 1 upon exposing to different chemical inputs. (a) MLCT spectra of 1 (red line), (b) after addition of one eqv H^+ (blue line), (c) after addition of two eqv H^+ (grey line), (d) with more than two equivalent of Et₃N (pink line) and acetonitrile baseline (black line).

Fig. S7: (Left) cyclic voltammogram of 1 in dry CH_3CN at scan rates 10 mV s⁻¹ to 1000 mV s⁻¹. (Right) cyclic voltammograms of 1 recorded for 300 cycles at a scan rate of 300 mV s⁻¹ under the identical conditions.