New Journal of Chemistry
 Ring-opening reactions of epoxidized SWCNT with nucleophilic agents: a convenient way for sidewall functionalization

 K H Markiewicz, A Z Wilczewska, O Chernyayeva and K Winkler
Supplementary Information

Functionalization of SWCNT

Synthesis of SWCNT-H (Birch reduction)

100 mg of CNT and 100 mg of Li was mixed in a dried $100-\mathrm{mL}$ three-neck round-bottom flask. Dried $\mathrm{NH}_{3}(25 \mathrm{~mL})$ was condensed into the reaction mixture from a $\mathrm{Na} / \mathrm{NH}_{3}$ solution. After the solvent became colorless, the reaction mixture was gradually heated to ambient temperature to evaporate NH_{3}. After a second condensation of 25 mL of $\mathrm{NH}_{3}, 10 \mathrm{~mL}$ of methanol was slowly added to the reactants. Then, the suspension was filtered through a 0.2 $\mu \mathrm{m}$ polytetrafluoroethylene (PTFE) membrane filter. The black product (SWCNT-H) was washed with water (20 mL), hydrochloric acid $(10 \%, 20 \mathrm{~mL})$, water $(20 \mathrm{~mL})$, and methanol $(20 \mathrm{~mL})$. Finally, the sample was dried in a vacuum oven at ambient temperature overnight.

Raman spectroscopy

Figure S1. Raman spectra of functionalized SWCNT.

FT IR spectroscopy

Figure S2. FTIR spectra of functionalized SWCNT.

SWCNT-MNP: 3500-3300 ($v(\mathrm{~N}-\mathrm{H})$); 1648 ($v(\mathrm{~N}-\mathrm{H})$); 1122 ($v(\mathrm{C}-\mathrm{O})$); 609 ($v(\mathrm{Fe}-\mathrm{O})$) SWCNT- p-PDA: 3500-3200 ($v(\mathrm{~N}-\mathrm{H})$); 2965-2850 ($v(\mathrm{C}-\mathrm{H})$); 1505, $1573(v(\mathrm{~N}-\mathrm{H})) ; 1104$ ($v(\mathrm{C}-$ O))

SWCNT- $\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}: 2500-3670(v(\mathrm{O}-\mathrm{H})) ; 2965-2850(v(\mathrm{C}-\mathrm{H})) ; 1540-1000(\delta(\mathrm{O}-\mathrm{H})) ; 1300-$ 1020 ($v(\mathrm{C}-\mathrm{O})$); 700-600 ($\delta(\equiv \mathrm{CH})$)

SWCNT-OOC $\left(\mathrm{CH}_{2}\right)_{5} \mathrm{Br}$: 2965-2850 ($v(\mathrm{C}-\mathrm{H})$); 1717 ($v(\mathrm{C}=\mathrm{O})$); 1103 ($v(\mathrm{C}-\mathrm{O})$)
SWCNT-SC(S)OEt: 1226 ($\delta(\mathrm{C}-\mathrm{O})$); 1115 ($v(\mathrm{C}=\mathrm{S})$); 1200-1050 ($v(\mathrm{C}=\mathrm{S})$); 800-570 ($v(\mathrm{C}-\mathrm{S})$)

UV-Vis-NIR spectroscopy

Figure S3. UV-Vis-NIR spectrum of pristine SWCNT.

Figure S4. UV-Vis spectra of functionalized SWCNT.
SWCNT-MNP: $\lambda_{\max }=228 ; \lambda_{\max }=434$
SWCNT- p-PDA: $\lambda_{\max }=230 ; \lambda_{\max }=272$
SWCNT-OCH ${ }_{2} \mathrm{C} \equiv \mathrm{CH}: \lambda_{\max }=230$
SWCNT-OOC $\left(\mathrm{CH}_{2}\right)_{5} \mathrm{Br}: \lambda_{\max }=230$
SWCNT-SC(S)OEt: $\lambda_{\max }=231 ; \lambda_{\max }=260$

Thermogravimetric analysis

Figure S5. TG and DTG curves of substituted SWCNT.

Figure S6. TG and DTG curves of TSC and SWCNT-TSC.

