Supporting information:

Reduced Graphene Oxide-CdS Nanocomposites with Enhanced Visible-light Photoactivity Synthesized Using Ionic-liquid Precursors

Nan Jiang^{a,†}, Zhiliang Xiu^{a, d,†}, Zheng Xie*, b, Hongyun Li^c, Gang Zhao^a, Wenpeng Wang^a, Yongzhong Wu*, a, Xiaopeng Hao^a

^aState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China.

^bTechnical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China

^cHigh School Affiliated to Shandong University, Shandong University, Jinan 250100,
P.R. China

^dSchool of Materials Science and Engineering, Qilu University of Technology, Jinan 250353, P. R. China.

[†]These two authors contribute equally.

E-mail: wuyz@sdu.edu.cn; ; zhengxie@mail.ipc.ac.cn

Table S1 BET specific area of the pure CdS and the RGO/CdS nanocomposites

	RGO weight content (wt. %)				
Sample	0	1%	5%	10%	15%
$S_{BET}(m^2 \cdot g^{-1})$	5.9	18.0	18.5	28.3	36.4

Figure S1 Variation of absorbance after adsorption-desorption equilibrium for the pure CdS and the RGO/CdS nanocomposites with different RGO weight ratios