Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Electronic supplementary information for New Journal of Chemistry

New highly electrodeficient cationic fluorescent tetrazines: A step toward the strongest purely organic photooxidants.

Eva Jullien-Macchi, Clémence Allain*, Valérie Alain-Rizzo, Cécile Dumas-Verdes, Laurent Galmiche, Jean-Frédéric Audibert, Mulu Berhe Desta, Robert Bernard Pansu and Pierre Audebert*

Authors address : PPSM, CNRS UMR 8531, Ecole Normale Supérieure de Cachan, 61, avenue du Président Wilson, 94235 Cachan cedex, France.

Contents :

NMR spectra	2
UV-Vis absorption and fluorescence emission spectra	12
Fluorescence decays	13
Time-resolved quenching experiments	16
Fluorescence on the solid state	19

NMR spectra

Figure 1: ¹H NMR of *3,6-bis(1-N-ethyl-imidazolium)-s-tetrazine tetrafluoroborate* **1**

Figure 2: ¹³C NMR of 3,6-bis(1-N-ethyl-imidazolium)-s-tetrazine tetrafluoroborate 1

Figure 3: ¹H NMR of *3,6-bis(1-N-methyl-benzimidazolium)-s-tetrazine trifluoromethanesulfonate* **2**

Figure 4: ¹³C NMR of *3,6-bis*(*1-N-methyl-benzimidazolium*)-*s*-tetrazine trifluoromethanesulfonate **2**

Figure 5: ¹H NMR of 6-(methoxyadamantan-1-yl)-3-(1-imidazolyl)-s-tetrazine **3n**

Figure 6: ¹³C NMR of 6-(methoxyadamantan-1-yl)-3-(1-imidazolyl)-s-tetrazine 3n

Figure 7: ¹H NMR of 6-(*methoxyadamantan-1-yl*)-3-(1-N-methyl-imidazolium)-s-tetrazine trifluoromethanesulfonate **3**

Figure 8: ¹³C NMR of 6-(*methoxyadamantan-1-yl*)-3-(1-N-methyl-imidazolium)-s-tetrazine trifluoromethanesulfonate **3**

Figure 9: ¹H NMR of 6-(methoxyadamantan-1-yl)-3-(1-benzimidazolyl)-s-tetrazine 4n

Figure 10: ¹³C NMR of 6-(methoxyadamantan-1-yl)-3-(1-benzimidazolyl)-s-tetrazine 4n

Figure 11: ¹H NMR of 6-(methoxyadamantan-1-yl)-3-(1-N-methyl-benzimidazolium)-stetrazine trifluoromethanesulfonate **4**

Figure 12: ¹³C NMR of 6-(*methoxyadamantan-1-yl*)-3-(1-N-methyl-benzimidazolium)-s-tetrazine trifluoromethanesulfonate **4**

Figure 13: ¹H NMR of 6-(methoxyadamantan-1-yl)-3-(1-(2-nonyl)benzimidazolyl)-s-tetrazine **5n**

Figure 14: ¹³C NMR of *6-(methoxyadamantan-1-yl)-3-(1-(2-nonyl)benzimidazolyl)-s-tetrazine* **5n**

Figure 15: ¹H NMR of 6-(*methoxyadamantan-1-yl*)-3-(1-(2-nonyl)-N-methylbenzimidazolium)-s-tetrazine trifluoromethanesulfonate **5**

Figure 16: ¹³C NMR of 6-(*methoxyadamantan-1-yl*)-3-(1-(2-nonyl)-N-methylbenzimidazolium)-s-tetrazine trifluoromethanesulfonate **5**

Figure 17 ¹H NMR of 6-(*methoxyadamantan-1-yl*)-3-(1-(5-chloro)benzimidazolyl)-s-tetrazine **6n**

Figure 18¹³C NMR of 6-(*methoxyadamantan-1-yl*)-3-(1-(5-chloro)benzimidazolyl)-s-tetrazine **6n**

Figure 19: ¹H NMR of 6-(*methoxyadamantan-1-yl*)-3-(1-(5-chloro)benzimidazolium)-stetrazine trifluoromethanesulfonate **6**

Figure 20: ¹³C NMR of 6-(*methoxyadamantan-1-yl*)-3-(1-(5-chloro)benzimidazolium)-stetrazine trifluoromethanesulfonate **6**

Expanded plot of the absorbance between 400 and 600nm (n- π^* transition):

Fluorescence decays

Figure 23: Fluorescence decay of *3,6-bis(1-N-ethyl-imidazolium)-s-tetrazine tetrafluoroborate* **1** in acetonitrile (excitation 355 nm, emission 515 nm)

 τ =108 ns χ^2 =0.956

Figure 24: Fluorescence decay of *3,6-bis(1-N-methyl-benzimidazolium)-s-tetrazine trifluoromethanesulfonate* **2** in acetonitrile (excitation 355 nm, emission 541 nm)

 τ =41 ns χ^{2} =1.03

Figure 25: Fluorescence decay of of *6-(methoxyadamantan-1-yl)-3-(1-N-methyl-imidazolium)s-tetrazine trifluoromethanesulfonate* **3** in acetonitrile (excitation 355 nm, emission 565 nm)

 τ =156 ns χ^{2} =0.97

Figure 26: fluorescence decay of *6-(methoxyadamantan-1-yl)-3-(1-N-methyl-benzimidazolium)-s-tetrazine trifluoromethanesulfonate* **4** in acetonitrile (excitation 355 nm, emission 555 nm)

 τ =125 ns χ^2 =1.05

Figure 27: fluorescence decay of *6-(methoxyadamantan-1-yl)-3-(1-(2-nonyl)-N-methyl-benzimidazolium)-s-tetrazine trifluoromethanesulfonate* **5** in dichloromethane (excitation 355 nm, emission 575 nm)

Figure 28: fluorescence decay of *6-(methoxyadamantan-1-yl)-3-(1-(5-chloro)benzimidazolium)-s-tetrazine* trifluoromethanesulfonate **6** in dichloromethane (excitation 355 nm, emission 565 nm)

 τ =110 ns χ^2 =1.08

Time-resolved quenching experiments

Figure 29: Fluorescence decays of tetrazine **1** ($4.0.10^{-4}$ M in acetonitrile) in the presence of increasing amounts of benzene (excitation 532 nm, emission 560 nm)

Figure 30: Fluorescence decays of tetrazine **2** ($2.7.10^{-4}$ M in acetonitrile) in the presence of increasing amounts of benzene (excitation 532 nm, emission 560 nm)

Figure 31: Fluorescence decays of tetrazine **3** ($2.0.10^{-4}$ M in acetonitrile) in the presence of increasing amounts of benzene (excitation 532 nm, emission 560 nm)

Fluorescence on the solid state

Figure 33: Scheme of the home-made perfusion chamber used for the quenching experiments by benzene vapors. A concentration of 1mmol benzene/L air is obtained upon a 5% v/v benzene solution in squalane at 293K.

