Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Synthesis and solid-state supramolecular chemistry of a series of pyridinium-derived zwitterions

Leigh Loots,*^{*a*} Delia A. Haynes and Tanya Le Roex

^a Department of Chemistry and Polymer Science, University of Stellenbosch, P. Bag X1, Matieland, 7602, Republic of South Africa.

Experimental:

A variety of pyridyl-derivatives were tested for zwitterion formation using a one-pot crystallisation with acetylenedicarboxylic acid (Scheme S1).

Scheme S1 Pyridyl-derivates that have not produced crystals and are currently still under investigation for zwitterion formation: 1) 4,4'bipyridine, 2) pyrazine, 3) DABCO, 4) 4-hydroxypyridine, 5) nicotinic acid 6) 4-pyridylacetic acid 7) 4-picoline, 8) 4pyridinecarboxaldehyde, 9) 4-mercaptopyridine, 10) 2-cyanopyridine, 11) 3-cyanopyridine, 12) quinoline, 13) 4-(aminomethyl)pyridine, 14) 3-pyridinepropionic acid, 15) aminopyridine, 16) 4-(dimethylamino)pyridine, 17) 2,3,5,6-tetrafluoro-4-pyridinecarbonitrile, 18) 1,2-bis(4pyridyl)ethylene, 19) 4,4'-trimethylenedipyridine.

Table S1 Selected crystallographic data for structures 1-7

Structure	1	2	3	4	5	5a	6 _{H2O}	6 _{меОН}	6a	7
Chemical formula	C ₉ H ₇ NO ₄	C ₁₃ H ₉ NO ₄	C ₉ H ₈ NO ₆	$C_{10}H_6N_2O_4$	$C_{20}H_{14}N_2O_{12}$	C ₁₀ H ₉ NO ₇	C ₁₅ H ₁₅ NO ₆	C ₁₆ H ₁₄ NO ₅	$C_{27}H_{24}N_2O_5$	C ₁₆ H ₁₃ NO ₄
Formula weight	193.16	243.21	226.16	218.17	474.33	255.18	305.28	300.29	456.48	283.27
Space group	P2 ₁ 2 ₁ 2 ₁	$P2_{1}/n$	<i>P</i> 2 ₁ / <i>c</i>	P2 ₁ /c	<i>P</i> -1	<i>P</i> -1	C2/c	$P2_{1}/n$	$P2_{1}/n$	Pbca
<i>a/</i> Å	7.968 (4)	11.119 (3)	10.444 (3)	7.097 (3)	7.189 (5)	7.344 (5)	13.856 (6)	13.746 (5)	16.831 (7)	15.143 (1)
b/ Å	8.368 (5)	8.057 (2)	8.094 (2)	19.995 (8)	7.500 (5)	7.851 (5)	8.011 (3)	7.408 (2)	7.267 (3)	7.687 (5)
c/ Å	12.570 (7)	12.839 (3)	12.306 (4)	7.478 (3)	9.557 (7)	9.780 (6)	25.655 (1)	14.216 (5)	20.065 (8)	22.303 (2)
<u>Σ</u> / °	90	90	90	90	82.788 (7)	91.428 (7)	90	90	90	90
<i>β</i> / °	90	113.549 (3)	110.376 (6)	112.227 (5)	87.499 (7)	94.012 (7)	92.488 (7)	90.223 (4)	110.560 (6)	90
γ/ °	90	90	90	90	64.972 (7)	106.401 (7)	90	90	90	90
Z	4	4	4	4	1	2	8	4	4	8
Temperature / K	100(2)	100(2)	100(2)	150(2)	100(2)	100(2)	100(2)	150(2)	100(2)	100(2)
Calculated Density / g.cm ⁻¹	1.531	1.532	1.547	1.475	1.700	1.572	1.401	1.382	1.320	1.450
μ / mm ⁻¹	0.123	0.116	0.133	0.117	0.144	0.136	0.109	0.104	0.092	0.105
Independent Reflections	1888	2414	2235	2232	2117	2439	3169	3349	5190	3070

Table 2 Hydrogen bonding parameters for ${\bf 1}$

D—H···A	D—H	Н…А	D····A	<i>D</i> —H···A
C3—H3…O3 ⁱ	0.95	2.58	3.336 (3)	137
04—H4…O2 ⁱⁱ	0.99 (3)	1.49 (3)	2.474 (2)	172 (3)
C6—H6…O1 ⁱⁱⁱ	0.95	2.35	3.156 (3)	142
C7—H7…O1 ^{iv}	0.95	2.52	3.120 (3)	121
C10—H10…O1 ^v	0.95	2.45	3.250 (3)	142
C10—H10…O4 ^{vi}	0.95	2.58	3.287 (3)	131
Symmetry codes: (i) $-x+2$ $y-1/2$ $-z+1/2$: (ii) $x+1/2$	1 v z: (iii) -v+1 v	$\pm 1/2 = -2 \pm 1/2 \cdot (iv) v$	$x + 1 - z \cdot (x) + 1/2$	$-x \pm 1/2 -z \pm 1$

Symmetry codes: (i) -x+2, y-1/2, -z+1/2; (ii) x+1, y, z; (iii) -x+1, y+1/2, -z+1/2; (iv) x, y+1, z; (v) x+1/2, -y+1/2, -z+1; (vi) x-1/2, -y+1/2, -z+1.

Table 3 Hydrogen bonding parameters for ${\bf 2}$

D—H···A	D—H	Н…А	D····A	<i>D</i> —H···A	
04—H4…O2 ⁱ	0.97 (3)	1.51 (3)	2.483 (2)	176 (3)	
С6—Н6…О1 ^{іі}	0.95	2.53	3.296 (2)	138	
C14—H14…O1 ⁱⁱⁱ	0.95	2.39	3.287 (2)	158	
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+3/2, y+1/2, -z+3/2.					

Table 4 Hydrogen bonding parameters for 3

<i>D</i> —H···A	D—H	Н…А	D····A	<i>D</i> —H···A
04—H1…O2 ⁱ	0.99 (3)	1.55 (4)	2.539 (2)	171 (3)
С3—Н3…Об ^{іі}	0.95	2.55	3.309 (3)	137
C7—H7…O3 ^{iv}	0.95	2.54	3.164 (3)	123
С9—Н9…О1 ^{іі}	0.95	2.38	3.235 (3)	149
06—H4…O2	0.79 (4)	2.09 (4)	2.851 (2)	162 (3)
06—H2…O1 ^v	0.87 (5)	1.99 (4)	2.835 (2)	165 (4)
07—H11…O6 ^{vi}	1.02 (2)	1.56 (2)	2.586 (3)	179 (3)
Symmetry codes: (i) x, $y+1$, z; (ii) $-x+1$, $y+1/2$, $-$	z+1/2: (iii) -x+1	v+1, $-z$; (iv) $-x+2$.	v = 1/2, $-z + 1/2$; (v)	-x+1, $y-1/2$.

Symmetry codes: (i) x, y+1, z; (ii) -x+1, y+1/2, -z+1/2; (iii) -x+1, -y+1, -z; (iv) -x+2, y-1/2, -z+1/2; (v) -x+1, y-1/2, -z+1/2; (vi) -x+2, -y+1, -z+1.

Table 5 Hydrogen bonding parameters for 4

<i>D</i> —H···A	D—H	Н…А	D····A	<i>D</i> —H···A	
04—H4…O1 ⁱⁱ	0.98 (3)	1.52 (3)	2.501 (2)	177 (2)	
С6—Н6…О2 ^{ііі}	0.95	2.18	3.088 (2)	160	
C8—H8····O1 ^{iv}	0.95	2.23	3.094 (2)	150	
С9—Н9…О1 ^v	0.95	2.22	3.141 (2)	164	
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z+1; (iii) x, -y+1/2, z+1/2; (iv) x+1, y, z+1; (v) -x+1, -y+1, -z+1.					

Table 6 Hydrogen bonding parameters for ${\bf 5}$

D—H···A	D—H	Н…А	D····A	<i>D</i> —H···A	
C3—H3…O3 ⁱ	0.96 (2)	2.41 (2)	3.343 (2)	167 (1)	
04—H4…O1 ⁱⁱ	0.93 (2)	1.60 (2)	2.526 (2)	175 (2)	
O5—H10…O2 ⁱⁱⁱ	0.96 (2)	1.64 (2)	2.593 (2)	177 (2)	
C5—H5····O6 ^{iv}	0.95	2.30	3.150 (2)	149	
С6—Н6…О4 ^v	0.95	2.46	3.388 (3)	167	
C8—H8…O1 ^{vi}	0.95	2.37	3.177 (2)	143	
С9—Н9…О1 ^{vii}	0.95	2.34	3.235 (2)	157	
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y-1, z; (iii) -x+2, -y+1, -z+2; (iv) x-1, y+1, z; (v) -x+1, -y+1, -z+2; (vi) x+1, y-1, z; (vii) -x+1, -y+2, -z+1.					

Table 7 Hydrogen	bonding parameters	for	5a
------------------	--------------------	-----	----

<i>D</i> —H···A	D—H	Н…А	D····A	<i>D</i> —H···A	
O1A—H1A····O4A ⁱ	1.02 (3)	1.48 (3)	2.494 (2)	173 (2)	
$C2B$ — $H2B$ ····O $3A^{v}$	0.95	2.43	3.245 (2)	143	
C2B—H2B····O5B ^{vi}	0.95	2.45	3.131 (3)	129	
01C—H1C…02A	0.86 (2)	1.93 (2)	2.785 (2)	170 (2)	
N1B—H1B…O1C ^{iv}	0.94 (2)	1.81 (2)	2.684 (2)	153 (2)	
С6В—Н6В…О1С	0.95	2.42	3.299 (2)	154	
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) x, y, z+1; (vi) x, y-1, z.					

Table 8 Hydrogen bonding parameters for $6_{\rm MeOH}$

D—H···A	D—H	Н…А	D····A	<i>D</i> —H···A	
С5—Н5…О2 ^{іі}	0.95	2.42	3.074 (2)	126	
C6B—H6B····O2 ⁱⁱ	0.95	2.41	3.03 (2)	123	
O6C—H2···O3 ⁱⁱⁱ	0.84 (3)	1.97 (3)	2.798 (2)	167 (3)	
O1—H1····O4 ^{iv}	0.86 (4)	1.59 (4)	2.446 (2)	171 (4)	
Symmetry codes: (ii) -x+2, -y, -z+1; (iii) x-1, y, z; (iv) x, y-1, z.					

Table 9 Hydrogen bonding parameters for $\delta_{\rm H2O}$

<i>D</i> —H···A	D—H	Н…А	D····A	<i>D</i> —H···A		
C5B—H5B…Ol ⁱ	0.95	2.26	3.16 (2)	157		
C9B—H9B····O4 ⁱⁱ	0.95	2.60	3.395 (9)	142		
С9В—Н9В…О5	0.95	2.62	3.340 (1)	133		
С9А—Н9А…О1 ^{ііі}	0.95	2.50	3.392 (9)	158		
С9А—Н9А…О5	0.95	2.62	3.171 (9)	117		
C5A—H5A…O1 ⁱ	0.95	2.46	3.392 (1)	166		
05—H5…O1 ⁱⁱⁱ	0.98 (3)	1.84 (3)	2.811 (2)	167 (3)		
O4—H4····O2 ^{iv}	0.93 (5)	1.57 (5)	2.461 (2)	160 (4)		
O5—H6…O3 ^v	0.95 (3)	1.93 (3)	2.843 (2)	162 (3)		
02—H2…O4 ^{vi}	0.96 (2)	1.51 (3)	2.461 (2)	168 (8)		
Summatry and as (i) $x = x + \frac{1}{2}$ (ii) $x + \frac{1}{2} + \frac{1}{2}$ $x + \frac{1}{2}$						

Symmetry codes: (i) -x, y, -z+1/2; (ii) -x+1/2, y-1/2, -z+1/2; (iii) -x+1/2, y+1/2, -z+1/2; (iv) x, y+1, z; (v) x+1/2, y-1/2, z; (vi) x, y-1, z.

Table 10 Hydrogen bonding parameters for 6a

D—H···A	D—H	Н…А	D····A	<i>D</i> —H···A
C2B—H2B····O2A ⁱ	0.95	2.51	3.213 (3)	131
C3B—H3B…O1D ⁱ	0.95	2.58	3.276 (3)	130
C5B—H5B…O1D ⁱⁱ	0.95	2.46	3.399 (3)	172
С6В—Н6В…О1А	0.95	2.60	3.219 (3)	123
С2С—Н2С…ОЗА	0.95	2.31	3.231 (3)	163
С3С—Н3С…О1А	0.95	2.47	3.392 (3)	163

C5C—H5C····O1A ⁱⁱⁱ	0.95	2.33	3.148 (3)	145	
C6C—H6C····O4A ^{iv}	0.95	2.66	3.292 (3)	125	
N1B—H1…O1A	1.08 (3)	2.54 (3)	3.231 (3)	121 (2)	
N1B—H1…O2A	1.08 (3)	1.53 (3)	2.603 (2)	178 (3)	
N1C—H2···O3A ^{iv}	1.09 (3)	1.53 (3)	2.618 (2)	173 (2)	
N1C—H2····O4A ^{iv}	1.09 (3)	2.56 (3)	3.298 (3)	124 (2)	
01D—H3…O4A ^v	0.98 (3)	1.77 (3)	2.752 (2)	178 (3)	
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1/2, -y+1/2, z-1/2; (iii) -x+3/2, y-1/2, -z+1/2; (iv) -x+2, -y+1, -z+1; (v) x, y-1, z.					

 Table 11 Hydrogen bonding parameters for 7

<i>D</i> —H···A	D—H	Н…А	D····A	<i>D</i> —H···A
04—H4…O1 ⁱ	0.91 (2)	1.72 (2)	2.617 (1)	171 (2)
C5—H5…O1 ⁱⁱ	0.95	2.59	3.210(1)	123
С5—Н5…О2 ^{іі}	0.95	2.44	3.248 (2)	143
С6—Н6…О1 ^{іі}	0.95	2.60	3.215 (2)	123
С9—Н9…О2 ^{ііі}	0.95	2.36	3.093 (2)	134
Symmetry codes: (i) x, y–1, z; (ii) –x, y–1/2, –z+1/2; (iii) –x+1/2, y–1/2, z.				

DSC and TG analysis

Figure S1 Overlay of TGA analysis of compounds 1-7.

Figure S2 DSC (blue) and TG (green) analysis of 1

Figure S3 DSC (blue) and TG (green) analysis of $\mathbf{2}$

Figure S4 DSC (blue) and TG (green) analysis of 3.

Figure S5 DSC (blue) and TG (green) analysis of 4.

Figure S6 DSC (blue) and TG (green) analysis of 5 (solid line) and 5a (dotted line).

Figure S7 DSC (blue) and TG (green) analysis of 6_{H2O} , 11.02% weight loss corresponds to the expected 11.1% for two molecules of water per 1 molecule of 6 as observed in the crystal structure (two partially occupied molecules).

Figure S8 DSC (blue) and TG (green) analysis of 6_{MeOH} . The TGA shows a 9.2% mass loss which corresponds to one methanol molecule per host molecule. This corresponds well with the crystal structure data.

Figure S9 DSC (blue) and TG (green) analysis of **6a**. TGA shows a large mass loss (27%) starting at ambient temperature.

Figure S10 DSC (blue) and TG (green) analysis of ${\bf 7}$

Figure S11 PXRD patterns for 1, calculated (red) and experimental (blue)

Figure S12 Calculated (red) and experimental (blue) PXRD patterns for compound 2.

Figure S13 Calculated (red) and experimental (blue) PXRD patterns for compound 3

Figure S14 Calculated (red) and experimental (blue) PXRD patterns for compound 4

Figure S15 Experimental and calculated PXRD patterns for 5 and 5a compared to the products obtained from liquidassisted grinding (LAG) experiments using either ethyl acetate (EtOAc) or water (H₂O) as solvent.

Figure S16 Comparison of experimental and calculated PXRD patterns for 6_{H2O} , 6_{MeOH} and 6a (salt). The experimental pattern for 6a appears to be a physical mixture of 6a as well as some of 6_{H2O} . The experimental pattern for 6_{MeOH} contains a few peaks that do not correspond to the calculated pattern. These peaks can be attributed to a mixture of products – solvent loss occurs when 6_{MeOH} is exposed to the atmosphere resulting in an apohost product.

Figure S17 Comparison of experimental and calculated PXRD patterns for 7 (calc), 7_{open}, 7_{diox} and 7_{diox} that was left in air for approximately 3 weeks

Figure S18 ¹H NMR spectrum for 4, the zwitteric compound was identified by comparing the ratio of the intergrals of the resonance peaks.

Figure S19 Zoomed in view of ¹H NMR spectrum for 4 showing chemical shifts in the area 6-9 ppm.

Figure S20 ¹³C NMR spectrum for **4**, the zwitteric compound was identified by comparing the ratio of the intergrals of the resonance peaks.

Figure S21 Zoomed in view of ¹³C NMR spectrum for 4 showing chemical shifts in the area 110-180 ppm