Supporting Information

A Ratiometric Fluorescent Hydrogel Sensor for Zinc(II) Based on a Two Fluorophore Approach

Graham R.C. Hamilton¹, Lewis Fullerton¹, Bridgeen McCaughan¹, Ryan F. Donnelly² and

John F. Callan^{1*}

1. School of Pharmacy and Pharmaceutical Sciences, The University of Ulster, Northern Ireland, BT52 ISA.; 2. School of Pharmacy, Queens University of Belfast, Northern Ireland.

* To whom correspondence should be addressed: email: j.callan@ulster.ac.uk

Figure S1: Stack of ¹H NMR spectra for poly(allyl amine), 4, 6.

Figure S2: Plot of relative ratiometric response of 6 against a range of metal ions.

Figure S3: ¹H NMR spectrum of sensor 4.

Figure S4: ¹³C NMR spectrum of sensor 4.

Figure S5: High resolution mass spectrum of sensor 4.

Figure S1: Stack of NMR spectra. (Top): **6** in MeOD. (Middle): **4** in d_6 DMSO. (Bottom): poly(allyl amine) in D_2O

Figure S2: Plot of relative ratiometric response for **6** against a range of metal ions (conc. = mM) in 4:1 HEPES (0.1M, pH 7.4 ± 0.1):MeOH.

Figure S3: 1H NMR spectrum (500 MHz, CDCl₃-d) of sensor 4.

Figure S4: ¹³C NMR spectrum (125 MHz, CDCl₃-d) of sensor 4.

Figure S5: HRMS spectrum of 4.