Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supporting information:

Density functional theory calculations of catalytic mechanistic pathways for the formation of O₂ involving Triazolylidene Iridium Complexes

Sateesh Bandaru^{1,2,b)}, Niall J. English^{1,2,a)}, and J.M.D. MacElroy^{1,2,c)}

Step I: $[Ir^{III}-OH_2]^+$ to $[Ir^{1V}-OH]^+$ and Step II: $[Ir^{IV}-OH]^+$ to $[Ir^{V}=O]^+$

The reduction potentials are calculated by the standard reduction free energy in solution, i.e.,

$$nFE^o = \Delta G_{(sol)}$$

Step I: $[Ir^{III}-OH_2^+]/[Ir^{1V}-OH^+]$

$$[Ir^{IV}-OH_2]^{+2} \xrightarrow{-H^+} [Ir^{IV}-OH]^{+1}$$

$$\uparrow -e^- \qquad \uparrow -e^-$$

$$[Ir^{III}-OH_2]^+ \xrightarrow{-H^+} [Ir^{III}-OH]^0$$

Figure S1: $[Ir^{III}-OH_2]^+$ to $[Ir^{1V}-OH]^+$ proton coupled electron transfer step computed thermochemistry pathways.

```
Using: E^o = \Delta G_{(sol)}/nF
```

To estimate $\Delta G_{(sol)}$, we can use Born-Haber cycles:

Born-Haber cycle for $[Ir^{III}-OH_2]^{+1}$ __-e⁻ $[Ir^{IV}-OH_2]^{+2}$

$$[\mathrm{Ir}^{\mathrm{III}} - \mathrm{OH}_{2}^{+1}]^{+\mathrm{III}} \xrightarrow{\Delta G_{(g)}} [\mathrm{Ir}^{\mathrm{IV}} - \mathrm{OH}^{+2}]^{+\mathrm{IV}}$$

$$\downarrow \Delta G_{\mathrm{solu}}(\mathrm{II}) \qquad \qquad \downarrow \Delta G_{\mathrm{solu}}(\mathrm{III})$$

$$[\mathrm{Ir}^{\mathrm{III}} - \mathrm{OH}_{2}^{+1}]^{+\mathrm{III}} \xrightarrow{-\Delta G_{(aq)}} [\mathrm{Ir}^{\mathrm{IV}} - \mathrm{OH}_{2}^{+2}]^{+\mathrm{IV}}$$

Born-Haber cycle for [Ir^{III}-OH] $-e^{-}$ [Ir^{IV}-OH]⁺¹

Corresponding authors. Email: a) niall.english@ucd.ie, b) sateesh.bandaru@ucd.ie, c) don.macelroy@ucd.ie

$$[Ir^{V}-OH]^{+2} \xrightarrow{-H^{+}} [Ir^{V}=O]^{+1}$$

$$\uparrow -e^{-} \qquad \uparrow -e^{-}$$

$$[Ir^{IV}-OH]^{+} \xrightarrow{-H^{+}} [Ir^{IV}=O]^{0}$$

Figure S2: $[Ir^{IV}-OH]^+$ to $[Ir^V=O]^+$ proton coupled electron transfer step computed thermochemistry pathways.

Pka Calculations:

We have calculated pKa values for both reaction steps which involve proton transfer. In the literature,^{6b} the procedure to calculate the pKa values from changes in the Gibbs free energy in solution is widely reported,^{6b,21-23} and the reader is referred thereto for additional details.

In our case, we have calculated the pKa values by using the following equation (for room-temperature estimation), using kcal/mol units for the solvation free energy:

$$pKa = \frac{\Delta G_{(sol)}}{1.365}$$

Here, we adopt a widely accepted²⁴ value for the free energy of solvation of a proton, $\Delta G_{solv}(H^+) = -265.9$ kcal/mol. The gas-phase Gibbs free energy is a small correction, given by $G^{o}_{(gas)}(H^+) = 3/2kT + PV - TS = -6.98$ kcal/mol.

Figure S3: Potential energy surface of conversion of cyclic structure(7b) to linear form(7a)