Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supporting Information

Magnetic refrigeration and slow magnetic relaxation in tetranuclear lanthanide cages (Ln = Gd, Dy) with *in situ* ligand transformation.

Javeed Ahmad Sheikh, Amit Adhikary and Sanjit Konar*

Department of Chemistry, IISER Bhopal, Bhopal-462066, India

Scheme S1. Mechanism showing in situ ligand transformation

Fig. S1 ESI-MS Spectra of ligand before addition of metal salt. The highlighted peaks match in order with HL_1 and H_2L respectively.

Fig S2. TGA plots for complexes 1-3

Fig. S3 Ball & stick model showing molecular structure of 2 in the crystal. Colour code: purple, Dysprosium; blue, nitrogen; red, oxygen; gray, carbon; Hydrogen atoms are omitted for clarity

Fig. S4 Illustration of coordination environment and geometry around two types of Ln^{III} centres in **1**, (a) Square antiprismatic, (b) Trigonal prismatic. Exactly similar coordination environment is found in **2**.

Fig. S5 Capped stick view showing intermolecular interactions in Complex 2. Colour code: Green, Metal; blue, nitrogen; red, oxygen; gray, carbon; Hydrogen atoms are omitted for clarity

Fig. S6 Wireframe view displaying π - π interactions between O-vanilin rings in Complex 1 or 2. Colour code: Same as Fig. S4.

Fig. S7 Illustration of coordination environment and geometry around two types of Ln^{III} centres in **3**, (a) Square antiprismatic, (b) Distorted Pentagonal bipyramidal

Fig. S8. Field-dependencies of isothermal normalized magnetizations for complex 2 collected for temperatures ranging from 2-10 K.

Fig. S9. Field-dependencies of isothermal normalized magnetizations for complex 3 collected for temperatures ranging from 2-10 K.

Fig. S10. M/N μ B vs H/T plots for complex 2 at 2-10 K.

Fig. S11. M/NµB vs H/T plots for complex 3 at 2-10 K.

Fig. S12 Temperature dependence of the in phase (χ') ac susceptibility for complex **3** under a zero dc field.

Fig. S13 Temperature dependence of the in phase (χ') (left) and out of phase (χ'') (right) ac susceptibility for complex 2 under a zero dc field.

Fig. S14 Frequency dependence of the out of phase (χ'') ac susceptibility for complex 3 under a zero dc field.

Fig. S15 Temperature dependence of the out of phase (χ'') ac susceptibility for complex 3 under a dc field of 1800 Oe.

	1	2		3	
Gd1- O4	2.23(2)	Dy1- O2	2.27(2)	Dy1- O1	2.40(2)
Gd1- O5	2.39(2)	Dy1- O3	2.58(2)	Dy1- O2	2.35(7)
Gd1- O12	2.46(2)	Dy1- O9	2.31(2)	Dy1- O4	2.38(2)
Gd1- O14	2.45(2)	Dy1- O10	2.47(2)	Dy1- 07	2.34(2)
Gd1- O18	2.40(2)	Dy1- O12	2.38(2)	Dy1- 08	2.31(2)
Gd1- O20	2.36(2)	Dy1- O20	2.33(2)	Dy1- N1	2.44(9)
Gd1- N2	2.43(2)	Dy1- O21	2.50(1)	Dy1- N2	2.42(8)
Gd1- N3	2.65(3)	Dy1- N2	2.29(2)	Dy2- O2	2.22(7)
Gd2- O1	2.44(2)	Dy2- O2	2.37(1)	Dy2- O3	2.29(2)
Gd2- O10	2.21(2)	Dy2- 06	2.42(2)	Dy2- 08	2.28(2)
Gd2- O11	2.38(2)	Dy2- 07	2.19(2)	Dy2- O10	2.49(7)
Gd2- O13	2.33(1)	Dy2- 08	2.44(2)	Dy2- O15	2.18(3)
Gd2- O14	2.42(2)	Dy2- O16	2.43(2)	Dy2- O20	2.49(2)
Gd2- O20	2.44(1)	Dy2- O20	2.34(2)	Dy2- O21	2.59(3)
Gd2- N22	2.55(3)	Dy2- N4	2.59(3)	Dy2- O24	2.42(6)
Gd2- N23	2.49(2)	Dy2- N6	2.45(2)	Dy3- O1	2.43(2)
Gd3- O1	2.40(2)	Dy3- O1	2.56(2)	Dy3- O2	2.18(7)
Gd3- O2	2.35(2)	Dy3- O9	2.35(2)	Dy3- 06	2.28(4)
Gd3- O6	2.42(2)	Dy3- O11	2.39(2)	Dy3- O16	2.22(5)
Gd3- 07	2.55(2)	Dy3- O14	2.20(2)	Dy3- O18	2.58(4)
Gd3- O8	2.24(2)	Dy3- O18	2.59(2)	Dy3- O19	2.49(3)
Gd3- 09	2.62(2)	Dy3- O21	2.28(2)	Dy3- O22	2.41(3)
Gd3- O13	2.35(2)	Dy3- N2	2.42(2)	Dy3- O23	2.48(2)
Gd3- N5	2.70(2)	Dy3- N3	2.59(2)	Dy4- O2	2.31(5)
Gd3- N6	2.60(2)	Dy3- N7	2.63(3)	Dy4- O3	2.33(3)
Gd4- O2	2.36(1)	Dy4- O4	2.38(2)	Dy4- O4	2.25(3)
Gd4- O3	2.59(1)	Dy4- O5	2.24(2)	Dy4- 06	2.27(4)
Gd4- O5	2.30(2)	Dy4- O11	2.39(2)	Dy4- O24	2.72(7)
Gd4- 06	2.32(2)	Dy4- O16	2.47(2)	Dy4- N6	2.62(5)
Gd4- O13	2.50(1)	Dy4- O20	2.43(1)	Dy4- N7	2.31(3)
Gd4- O20	2.38(1)	Dy4- O21	2.29(1)	Dy1-O1-Dy3	96.07(8)
Gd4- N1	2.49(2)	Dy4- N10	2.52(3	Dy1-O2-Dy2	107.4(3)
Gd4- N4	2.45(2)	Dy4- N11	2.55(3)	Dy1-O2-Dy3	104.9(3)
Gd1-O5-Gd4	107.2(7)	Dy1-O2-Dy2	107.1(6)	Dy1-O2-Dy4	100.9(2)
Gd1-O14-Gd2	105.0(7)	Dy1-O9-Dy3	99.5(7)	Dy2-O2-Dy3	130.3(3)
Gd1-O20-Gd2	107.1(6)	Dy1-O21-Dy3	96.0(6)	Dy2-O2-Dy4	99.1(2)
Gd1-O20-Gd4	105.2(6)	Dy1-O21-Dy4	103.3(6)	Dy3-O2-Dy4	110.6(3)
Gd2-O1-Gd3	109.2(7)	Dy1-N2-Dy3	98.1(6)	Dy2-O3-Dy4	96.37(9)
Gd2-O13-Gd3	114.8(7)	Dy2-O20-Dy4	107.4(7)	Dy1-O4-Dy4	101.7(3)
Gd2-O13-Gd4	103.8(7)	Dy2-O16- Dy4	103.5(7)	Dy3-O6-Dy4	109.0(2)
Gd2-O20-Gd4	104.1(6)	Dy3-O11-Dy4	109.2(7)	Dy1-O8-Dy2	106.4(6)
Gd3-O13-Gd4	95.1(6)	Dy3-O21-Dy4	107.0(7)	Dy2-O24-Dy4	84.0(2)
Gd3-O6-Gd4	98.1(6)				
Gd3-O2-Gd4	99.0(6)				

Table S1. Selected bond distances (Å) and bond angles (°) around the Ln^{III} centers found in 1-3.

Compound	$-\Delta \text{Sm}/\text{JKg}-1\text{K}-1 \ (\Delta \text{H} = 7 \text{ T})$
$[Gd_{24}(DMC)_{36}(\mu_4-CO_3)_{18}(\mu_3-H_2O)_2] \cdot nH_2O^1$	46.1
$\left[\mathrm{Gd}_4(\mathrm{OAc})_4(\mathrm{acac})_8(\mathrm{H}_2\mathrm{O})_4\right]^2$	37.7
$[Gd_{10}(L)_5(\mu_2 - OH)_6(H_2O)_{22}](Cl)_4 \cdot 7H_2O^3$	37.4
$[{Gd(OAc)_3(H_2O)_2}_2] \cdot 4H_2O^4$	40
$[Gd_{3}L^{1}_{2}(H_{2}O)_{8}(Cl)](Cl)_{4} \cdot 10H_{2}O^{5}$	31.3
$[Gd_6L^2(HCO_2)_4(\mu_3-OH)_4(DMF)_6(H_2O)_2](Cl)_2\cdot 4H_2O^5$	33.5
$[Gd_{10}(3-TCA)_{22}(\mu_3-OH)_8(H_2O)_4]^6$	31.2
$[Gd_4(\mu_3-OH)_2(L)_2L_1L_2(HOCH3)_2] \cdot xH_2O (x = -11)$	27.2
(present work)	

Table S2. $-\Delta S_m (Jkg^{-1} K^{-1})$ value of some discrete compounds and present work ($\Delta H = 7 T$)

References:

1. L-X. Chang, G. Xiong, L. Wang, P. Cheng and B. Zhao, Chem. Commun. 2013, 49, 1055.

2. J. B. Peng, Q. C. Zhang, X. J. Kong, Y. P. Ren, L. S. Long, R. B. Huang, L. S. Zheng and Z. P. Zheng, Angew. Chem. Int. Ed. 2011, 50, 10649.

3. A. Adhikary, H. S. Jena, S. Khatua and Sanjit Konar, Chem. Asian J. 2014, 9, 1083.

4. M. Evangelisti, O. Roubeau, E. Palacios, A. Camon, T. N. Hooper, E. K. Brechin and J. J. Alonso, Angew. Chem. Int. Ed. 2011, 50, 6606.

5. A. Adhikary, J. A. Sheikh, S. Biswas and S. Konar, 2014, DOI: 10.1039/C4DT00540F.

6. S. J Liu, J. P. Zhao, J. Tao, J. M. Jia, S. D. Han, Y. Li, Y. C. Chen and X. H Bu, Inorg. Chem. 2013, 52, 9163.