Supporting Information

Facile Access to Imidazole and Imidazolium Substituted Dibenzo-Diazocines

Arruri Sathyanarayana and Ganesan Prabusankar*

Department of Chemistry, Indian Institute of Technology Hyderabad, ODF Estate, Yeddumailaram, AP, INDIA 502 205. Fax: +91 40 2301 6032. E-mail: <u>prabu@iith.ac.in</u>

Figure S1: ¹H NMR spectrum (400 MHz, CDCl₃, RT) of 3

Supporting Information

Figure S2: ¹³C NMR spectrum (100 MHz, CDCl₃, RT) of 3

Figure S6:¹³C NMR spectrum (100 MHz, DMSO-*d*₆, RT) of 6

Figure S7:¹H NMR spectrum (400 MHz, DMSO-*d*₆, RT) of 7

opm (t1)

Figure S11:¹H NMR spectrum (400 MHz, DMSO-*d*₆, RT) of 9

2D NMR Spectrums

Figure S13: HSQC of 3 (400 MHz, CDCl₃, RT)

Figure S15: HSQC of 3 expansion

Figure S22: HSQC of 5 expansion

22

26

Figure S29: HSQC of 6 (400 MHz, DMSO-d₆, RT)

Supporting Information

Figure S32: HMBC of 6 (400 MHz, DMSO-d₆, RT)

Figure S33: HMBC of 6 expansion

Figure S34: HMBC of 6 expansion

Figure S35: HMBC of 6 expansion

Figure S38: HSQC of 7 expansion

Figure S39: HSQC of 7 expansion

Figure S40: HMBC of 7 (400 MHz, DMSO-d₆, RT)

Figure S41: HMBC of 7 expansion

Figure S42: HMBC of 7 expansion

Figure S43: HMBC of 7 expansion

Figure S44: HMBC of 7 expansion

Figure S45: HSQC of 8 (400 MHz, DMSO-d₆, RT)

Figure S48: HMBC of 8 (400 MHz, DMSO-d₆, RT)

Figure S54: HSQC of 9 expansion

Figure S56: HSQC of 9 expansion

Figure S61: HMBC of 9 expansion

Figure S62: HMBC of 9 expansion

Figure S63: HMBC of 9 expansion

Figure S64: ¹H NMR spectrum (400 MHz, DMSO-*d*₆, RT) of 10 (type II)

Supporting Information

Figure S65: ¹³C NMR spectrum (100 MHz, DMSO-*d*₆, RT) of 10 (type II)

Supporting Information

Figure S66: HRM spectrum of 3

Ion

(M+H)+

(M+H)+

(M+H)+

330 335 340 345 350 355 360 355 370 375 380 385 390 395 400 405 410 415 420 Counts vs. Mass-to-Charge (m/2)

Figure S67: HRM spectrum of 5

0-

Ion

M+

M+

M+

M+

Figure S68: HRM spectrum of 6

DB Formula C27 H32 I N6

Ion

M+

M+

M+

M+

Formula

MS Zoomed Spectrum

2-	537 (IC33H2	7.2479 28N81+H)+			
-		,			
2					
5-					
1-					
5-					
5-				575.2236	
5-			([C	33H28N8]+K)+	

MS Spectrum Peak List

· · · · · · · · · · · · · · · · · · ·							
m/z	z	Abund	Formula	Ion			
537.2479	1	207117.88	C33H28N8	(M+H)+			
538.2514	1	69668.34	C33H28N8	(M+H)+			
539.2543	1	12869.21	C33H28N8	(M+H)+			
540.2571	1	1610.24	C33H28N8	(M+H)+			
575.2236	1	5224.53	C33H28N8	(M+K)+			
576.2249	1	1874.42	C33H28N8	(M+K)+			
577.229	1	291.32	C33H28N8	(M+K)+			
578.241	1	36.66	C33H28N8	(M+K)+			

Figure S70: HRM spectrum of 8

0.6 0.4 0.2 0 540

545

550

555

Compound Label	RT	Mass	Abund	Formula	Tat Mass	Diff (ppm)	MEG Formula	DB Formula
Cpd 1: C27 H32 I N6	0.152	567.1708	140445	C27 H32 I N6	567.1733	-4.49	C27 H32 I N6	C27 H32 I N6

Compound Label	m/z	RT	Algorithm	Mass	
Cpd 1: C27 H32 I N6	567.1702	0.152	Find By Formula	567.1708	
x10 5 Cpd 1: C27 H3	2 I N6: +ESI EIC(5	67.1728, 5	68.1757, 568.1806, 569.1	835) Scan Frag=1	50.0V
1 0.152					1
3-					
2					
1					
01 02 03	04 05 06 0	7 0 8 0	9 1 11 12 13 14	15 16 17 18	2 1 9
	(Counts vs.	Acquisition Time (min)		
x10 5 Cpd 1: C27 H3	2 I N6: + FBF Spec	trum (0.10	07-0.301 min) GP-ASII-121	-1-00.d Subtract	
10					
1.2-					
0.8					
0.6					
0.6-	568.1 [C27H3]	733 2IN61+			
0.4			569.176	6	
0.2			[C27H32IN	6]+	
0- 567.4.567	6 567 8 568 56	8 2 568 4	568 6 568 8 569 569 2	569.4 569.6 569.8	570
	(Counts vs.	Mass-to-Charge (m/z)		
IC Zoomed Spectrum					
s zoonieu specurum					
x10 5 Cpd 1: C27 H3	2 TNb: + FBF Spec	trum (0.10	57-0.301 min) GP-ASII-121	-1-00.d Subtract	
1.2			C27H32IN6]+		
1					
0.8					
0.0					

560 565 570 575 Counts vs. Mass-to-Charge (m/z) 580

585

590

595

MS S	pectrum	Pea	k List	
------	---------	-----	--------	--

m/z	z	Abund	Formula	Ion
567.1702	1	140444.5	C27H32IN6	M+
568.1733	1	38573.97	C27H32IN6	M+
569.1766	1	6100.02	C27H32IN6	M+
570.1791	1	623.26	C27H32IN6	M+

Figure S71: HRM spectrum of 9

m/z	z	Abund	Formula	Ion
537.2485	1	1975.08	C33H28N8	(M+H)+
538.252	1	884.58	C33H28N8	(M+H)+
539.2535	1	221.35	C33H28N8	(M+H)+
554.2545	1	81.82	C33H28N8	(M+NH4)+
575.2181	1	64.73	C33H28N8	(M+K)+

MS Zoomed Spectrum

5-	(IC	537.2485 33H28N81	+H)+					
5-			,					
5-								
5-		- 1						
5-				554.2545		575	2181	
			([C33	H28N8]+N	VH4)+	([C33H2	8N8]+K)+	
				- L.				

71

Entry	Χ	Yield%	Reference
1	F	27	[1]
2	Cl	19	[1]
3	Br	9,10	[1]
4	Ι	6 ^a	[3]
5	Imidazole	79%	This work

a) Isolated an impure product
Table S2: Known 4,10-di substituted methano dibenzo-diazocines with substituents at 2,8positions.

Entry	R	X	Yield%	Reference
1	Me	Br	85, 98	[1]
				[5]
2	Me	Cl	77	[1]
3	Me	F	75	[1]
4	Me	Ι	30	[1]
5	Bu ^t	Br	30	[6]
6	Me	NO ₂	36	[2]
7	OMe	CO ₂ Hexyl	16	[7]
8	Me	CO ₂ Hexyl	16	[7]
9	Br	Br	33, 60, 72	[8]
				[9], [4]
10	Br	Cl	86	[4]
11	CF ₃	CF ₃	5	[6]
12	CO ₂ Et	Br	48	[7]
13	CO ₂ Hexyl	Br	88	[7]
14	NO ₂	Br	28	[2]

Supporting Information

	No.	1/7	2/8	3/9	4/10	4a/10a	6/12	6/12	13	6a/12a
	X						endo	exo		
¹ H	Br ^(a)	6.91-	6.91-	7.46	-	-	4.37	4.62	4.39	-
NMR		6.96	6.96	(d,d)			9(d)	(d)	(s)	
		(m)	(m)	J=6.7,			J=17.3	J=17.3		
				2.6 Hz			Hz	Hz		
	Cl ^(a)	6.90	6.99	7.27	-	-	4.35	4.63	4.38	-
		(d,d)	(t)	(d,d)			(d)	(d)	(s)	
		J=7.7,	J=7.7	J=7.7,			J=17.6	J=17.6		
		0.8 Hz	Hz	0.8 Hz			Hz	Hz		
	F ^(a)	6.76	6.90-	6.90-	-	-	4.23	4.63	4.32	-
		(d)	7.00	7.00			(d)	(d)	(s)	
		J=7.3	(m)				J=17.1	J=17.1		
		Hz					Hz	Hz		
	Im ^(b)	6.82	7.09	7.04	-	-	3.33	4.26	4.32	-
		(d)	(d)	(t)			(d)	(d)	(s)	
		J=7.6	J=7.6	J=7.6			J=17.2	J=17.2		
		Hz	Hz	Hz			Hz			
¹³ C	Br ^(a)	126.47	125.76	131.69	120.27	144.92	55	.6	67.72	131.06
NMR	Cl ^(a)	125.79	125.10	128.49	129.45	143.67	54	.97	67.69	130.59
	F ^(a)	122.54	124.54	114.06	156.32	145.23	55.	.38	67.42	130.30
	Im ^(b)	126.80	123.77	124.50	129.59	131.59	54	.18	66.79	140.94

Table S3: NMR comparison of 4,10-dihalo Träger's base analogues with 3.

a) Listed spectral values are taken from: A. Hansson, J. Jensen, O. F. Wendt and K. Wärnmark, Eur. J. Org. Chem., 2003, 3179.

b) Present work.

parameters	3a	3b	4	5	6	7
Empirical formula	$C_{5.25}H_5N_{1.5}O_{0.25}$	$C_{5.25}H_{4.5}N_{1.5}$	C ₂₁ HN ₆	$C_{23}H_{24}I_2N_6$	$C_{6.75}H_8N_{1.5}I_{0.5}$	$C_{16.5}H_{15}N_4ClO_{0.5}$
Formula weight	372.43	372.43	354.42	638.30	694.40	625.56
Temperature/K	150	150	150	298	150	150
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	triclinic
Space group	$P2_1/c$	$P2_1/c$	C2/c	$P2_1/c$	C2/c	Pī
a/Å	12.8104(4)	12.9360(5)	25.140(4)	10.9300(2)	10.1807(5)	8.3442(10)
b/Å	9.7998(2)	9.8962(3)	5.5409(5)	16.8443(3)	13.9648(7)	12.5633(12)
c/Å	15.3326(4)	15.4643(5)	13.9897(17)	14.0472(3)	20.5397(9)	15.0779(16)
α/°	90	90	90	90	90	84.154(8)
β/°	113.436(3)	113.922(4)	122.157(19)	107.695(3)	101.629(5)	79.178(10)
γ/°	90	90	90	90	90	87.113(9)
Volume/Å ³	1766.04(9)	1809.63(12)	1649.8(5)	2463.83(10)	2860.2(2)	1543.7(3)
Ζ	4	4	4	4	4	2
$ ho_{ m calc} m mg/mm^3$	1.4006	1.3669	1.4268	1.7206	1.6125	1.3458
μ/mm^{-1}	0.734	0.717	0.712	20.220	17.468	2.223
F(000)	786.4	786.4	746.2	1242.1	1370.3	655.2
2Θ range for data collection	6.28 to 141.42°	7.48 to 141.58°	8.3 to 140.76°	6.6 to 141.54°	8.8 to 141.38°	7.08 to 142.48°
Reflections collected	6629	7054	2878	10257	5536	8560
Independent reflections	3321[R(int) = 0.0257]	3405[R(int) = 0.0225]	1547[R(int) = 0.0269]	4654[R(int) = 0.0464]	2707[R(int) = 0.0341]	5183[R(int) = 0.0338]
Data/restraints/parameters	3321/0/263	3405/0/253	1547/0/122	4654/0/282	2707/0/162	5183/0/401
Goodness-of-fit on F ²	1.053	1.044	1.040	1.045	1.021	1.090
Largest diff. peak/hole / e Å ⁻³	0.26/-0.27	0.70/-0.65	0.23/-0.30	1.40/-2.08	0.71/-0.76	0.54/-0.51

Table S4. Crystallographic data, details of data collection and structure refinementparameters for compounds 3-7.

Supporting Information

		$R_1 =$	$R_1 =$	$R_1 =$		
Final R indexes [I>=2o	$R_1 = 0.0400,$	0.0578,	0.0410,	0.0520,	$R_1 = 0.0325$,	$R_1 = 0.0723$,
(I)]	$wR_2 = 0.1079$	$wR_2 =$	$wR_2 =$	$wR_2 =$	$wR_2 = 0.0838$	$wR_2 = 0.2241$
		0.1571	0.1152	0.1422		

	3a	3b	4	5	6	7	
Bond lengths (Å)							
N _a –C _a	1.471(17)	1.471(2)	1.467(18)	1.461(7)	1.473(4)	1.471(6)	
N _b –C _a	1.464(17)	1.463(3)	1.467(18)	1.469(7)	1.473(4)	1.461(7)	
Bond angles (°)							
N _a -C _a -N _b	111.90(11)	112.00(16)	111.45(18)	111.6(4)	111.1(5)	111.4(5)	
$N_c - C_h - N_d$	111.7	9(13) 112.4	4(2) 112.26	(15) 108.4(4)	109.2(4)	109.2(6)	
N_e - C_i - N_f	112.0	1(12) 112.2	2(2) 112.26	(15) 108.7(5)	109.2(4)	107.8(5)	

Table S5. The bond distances and angles comparison of 3-7.

Table S6: Single Crystal X-Ray Parameters of 10.

Crystal system	monoclinic
Space group	P2 ₁ /b11
a/Å	18.3095(7)
b/Å	9.4486(2)
c/Å	36.0558(11)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	6237.6(3)
Reflections collected	10885
Independent reflections	6946[R(int) = 0.1001]
Data/restraints/parameters	6946/0/597
Largest diff. peak/hole / e Å ⁻³	4.35/-5.34

Supporting Information

References

- [1] A. Hansson, J. Jensen, O. F. Wendt, K. Wärnmark, Eur. J. Org. Chem. 2003, 3179–3188.
- [2] M. D. H. Bhuiyan, A. B. Mahon, P. Jensen, J. K. Clegg, A. C. Try, *Eur. J. Org. Chem.* 2009, 687–698.
- [3] J. Jensen, K. Warnmark, Synthesis 2001, 1873–1877.
- [4] J. Sturala, R. Cibulka, Eur. J. Org. Chem. 2012, 7066–7074.
- [5] S. Sergeyev, F. Diederich, Chirality 2006, 18, 707-712.
- [6] D. A. Lenev, K. A. Lyssenko, R. G. Kostyanovsky, Mendeleev Commun., 2006, 16, 138–139.

[7] M. Delower, H. Bhuiyan, Kai-Xian Zhu, Paul Jensen, and Andrew C. Try *Eur. J. Org. Chem.*2010, 4662–4670.

- [8] D. Didier, B. Tylleman, N. Lambert, C. M. L. Vande Velde, F. Blockhuys, A. Collas, S. Sergeyev, *Tetrahedron* **2008**, *64*, 6252–6262.
- [9] M. Faroughi, A. C Try, P. Turner, Acta Crystallogr., Sect. E, 2006, 62, o3893-o3894.