Supporting Information

Meso-aryloxy and meso-arylaza linked BODIPY

dimers: synthesis, structure and properties.

Rajneesh Misra, * Bhausaheb Dhokale, Thaksen Jadhav, Shaikh M. Mobin.

Department of Chemistry, Indian Institute of Technology Indore, Indore- 452 017, India.

Table of Contents

I.	General methods ······S3
II.	Photophysical properties ······S6
III.	Electrochemical properties
IV.	Single crystal x-ray properties and data·····S8
V.	Theoretical Calculations S11
VI.	Copies of ¹ H NMR, ¹³ C NMR and HRMS Spectra of the New Compounds

References······S44

Figure S1. The aryloxy and arylaza BODIPYs in day light.

Figure S2. Normalized absorption and excitation spectra of 3d

Figure S3. Normalized absorption and excitation spectra of 3e

Figure S4. Normalized absorption and excitation spectra of 3f

Electrochemical Characterizations

Electrochemical characterization of all compounds was done by cyclic voltametry (CV) and Differential pulse voltametry (DPV). Voltamograms were recorded on a CHI620D electrochemical analyzer using glassy carbon as working electrode, Pt wire as the counter electrode, and saturated calomel electrode as the reference electrode (SCE). The scan speed was 100 mVS⁻¹. A solution of tetrabutylammonium- hexafluorophosphate (TBAPF₆) in anhydrous $CH_{2e}l_2$ (0.1 M) was employed as the supporting electrolyte. The half-wave oxidation potentials were corrected to ferrocene as per IUPAC guidelines.¹

Figure S5. CV and DPV plots of BODIPY dimer 2a.

Figure S6. CV and DPV plots of BODIPY dimer 2b.

Figure S7. CV and DPV plots of BODIPY dimer 2c.

Figure S8. CV and DPV plots of BODIPY dimer 3d.

Figure S9. CV and DPV plots of BODIPY dimer 3e.

Figure S10. CV and DPV plots of BODIPY dimer 3f.

Single Crystal X-ray Diffraction Studies.

Single crystal X-ray structural studies of **1**, **2b**, **2c** and **3e** were performed on a CCD Agilent Technologies (Oxford Diffraction) SUPER NOVA diffractometer. Data were collected at 293(2) K using graphite-monochromated Mo K α radiation ($\lambda_{\alpha} = 0.71073$ Å) for **1** and at 150(2) K using graphite-monochromated Cu K\ α radiation ($\lambda_{\alpha} = 1.5418$ Å) for **2b**, **2c** and **3e**. The strategy for the Data collection was evaluated by using the CrysAlisPro CCD software. The data were collected by the standard 'phi-omega scan techniques, and were scaled and reduced using CrysAlisPro RED software. The structures were solved by direct methods using SHELXS-97, and refined by full matrix least-squares with SHELXL-97, refining on $F^{2.1}$. The positions of all the atoms were obtained by direct methods. All non-hydrogen atoms were refined anisotropically. The remaining hydrogen atoms were placed in geometrically constrained positions, and refined with isotropic temperature factors, generally $1.2U_{eq}$ of their parent atoms. The crystal and refinement data are summarized in Table S2 (ESI). The CCDC 964025, 964026, 966965 and 964027 contain the supplementary crystallographic data for 1, 2b, 2c and 3e respectively. These obtained free data be of charge can via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 union Road, Cambridge CB21 EZ, UK; Fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Figure S12. Crystal structure of 2b

Figure S14. Crystal structure of 3e

	Distance (Å)	Angle (°)
1		. ()
C(1)-H(1)F(1)	2.720	98.37
C(9)-H(9)F(1)	2.514	163.63
C(7)-H(7)F(1)	2.517	161.44
C(3)-H(3)F(2)	2.651	119.59
C(8)-H(8)F(2)	2.420	129.12
C(1)-H(1)Cl(1)	2.865	167.25
C(1)-H(1)Cl(1)	2.894	134.44
2b		
C(13)-H(13)F(2)	2.532	152.68
N(3)-H(3)O(111)	2.059	163.26
N(4)-H(4)F(1)	2.167	147.33
C(3)-H(3A)O(111)	2.446	151.51
F(1)N(4)	2.947	
C(18)-H(18)F(1)	2.460	152.55
C(12)-H(12) π (pyrrolic)	2.989	
C(2)-H(2)F(1)	2.663	148.96
C(19)-H(19)F(2)	2.377	174.75
C(8)-H(8)F(3)	2.577	118.36
C(13)-H(13) π (pyrrolic)	3.289	
C(9)-H(9)F(4)	2.438	140.98
N(4)-H(4)F(4)	2.556	120.97
С(20)-Н(20)π (ВОДІРУ)	2.660	
2c		
C(11)-H(11)F(2)	2.571	125.00
C(12)-H(12)F(2)	2.658	121.31
C(101)-H(101)F(1)	2.466	137.05
C(1)-H(1)Cl(1)	2.850	164.97
N(3)-H(3)Cl(1)	2.698	121.31
3 e		
C(1)-H(1)F(4)	2.532	132.10
C(18)-H(18)π (Ph)	3.105	
C(11)-H(11)F(4)	2.447	146.92
C(13)-H(13)F(3)	2.669	127.23
C(23)-H(23)F(2)	2.529	135.12

Table S1. Distance and angle of intermolecular interactions in the crystal structures.

Compound	1	2b	2c	3e
Empirical formula	C ₉ H ₆ B Cl F ₂ N ₂	$C_{27}H_{24}B_2F_4N_6O$	$C_{25}H_{20}B_2Cl_2F_4N_6$	$C_{24}H_{16}B_2F_4N_4O_2$
Formula weight	226.42	546.14	572.99	490.03
Temperature/K	150(2) K	150(2) K	150(2) K	150(2) K
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic,
Space group	$P2_{1}/c$	$P2_{1}/c$	<i>C</i> 2/c	$P\overline{1}$
Unit cell dimensions				
a/Å	7.6805(3)	14.2703(2)	10.7934(2)	9.9907(7)
a/°	90	90	90	81.573(7)
b/ Å	13.5584(4)	8.20790(10)	15.9368(2)	10.7791(9)
β/°	101.345(4)	104.5780(10)	105.658(2)	66.188(8)
c/ Å	9.0977(3)	22.8846(2)	14.8791(2)	11.2843(9)
$\gamma/^{\circ}$	90	90	90	83.531(7)
Volume/ Å ³	928.88(5)	2594.16(5)	2464.41(6)	1097.84(15)
Ζ	4	4	4	2
Calculated density/ Mg/m ³	1.619	1.398	1.544	1.482
Absorption coefficient/mm ⁻¹	0.402	0.904	2.898	1.010
<i>F</i> (000)	456	1128	1168	500
Crystal size/mm	0.23 x 0.16 x 0.12	0.33 x 0.26 x 0.18	0.23 x 0.18 x 0.13	0.23 x 0.18 x 0.13
θ range from data collection/	°3.52 to 25.00	3.20 to 72.24	5.08 to 72.13	4.15 to 72.07
Reflections collected/unique	6552 / 1632 [R(int) = 0.0162]	17912 / 5056 [R(int) = 0.0190]	7702 / 2408 [R(int) = 0.0154]	7319 / 4205 [R(int) = 0.0128]
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Data/restraints/parameters	1632 / 0 / 136	5056 / 0 / 363	2408 / 0 / 182	4205 / 0 / 325
Goodness-of-fit on F^2	1.055	1.026	1.061	1.028
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0253,$ $wR_2 = 0.0635$	$R_1 = 0.0378,$ $wR_2 = 0.0994$	R1 = 0.0565, $wR_2 = 0.1416$	$R_1 = 0.0393,$ $wR_2 = 0.1004$
R indices (all data)	$R_1 = 0.0263,$ $wR_2 = 0.0646$	$R_1 = 0.0417,$ $wR_2 = 0.1033$	R1 = 0.0602, $wR_2 = 0.1452$	$R_1 = 0.0491,$ $wR_2 = 0.1100$
Largest diff. peak and hole/e $\mbox{\AA}^{-3}$	0.216 and -0.272	0.374 and -0.250	0.619 and -1.124	0.198 and -0.213
CCDC number	964025	964026	966965	964027

Table S2. Crystal structure and data refinement parameters

DFT Calculations.

Calculation method: B3LYP/6-31G** with Gaussian 09²

Figure S15. The energy optimized structures, HOMO-LUMO energy levels and MEP of the *meso* arylaza (2a-2c) and aryloxy (3d-3f) BODIPY dimers.

DFT Data for BODIPY dimer 3d

Standard orientation:

Center	Ato	mic At	omic	Coordinate	es (Angstrom
Num	ber	Number	Туре	Х	Y Z
1	6	0	4.725104	-2.749661	-0.399696
2	1	0	3.873703	-3.371373	-0.638014
3	6	0	6.038747	-3.147132	-0.176353
4	1	0	6.432155	-4.154083	-0.197161
5	6	0	6.781853	-1.976402	0.077586
6	1	0	7.832306	-1.866893	0.311362
7	7	0	5.987998	-0.897252	0.007436
8	5	0	6.354913	0.571561	0.415630
9	6	0	3.880936	3.214010	-0.669072
10	6	0	3.074194	2.086544	-0.773100
11	1	0	2.040282	2.053228	-1.083148
12	6	0	3.876735	0.971568	-0.421788
13	6	0	3.659298	-0.419492	-0.469568
14	6	0	4.703084	-1.339115	-0.285380
15	7	0	5.152250	1.438508	-0.105805
16	9	0	6.434674	0.664340	1.793095
17	6	0	5.151414	2.770545	-0.255041

18	1	0	6.050780	3.340279	-0.064618
19	9	0	7.522877	0.968104	-0.199790
20	1	0	3.601795	4.238328	-0.873750
21	6	0	1.252631	-0.437090	-0.382712
22	6	0	0.225122	-0.392027	-1.323572
23	6	0	1.038372	-0.055559	0.942127
24	6	0	-1.038363	0.055561	-0.942166
25	1	0	0.423169	-0.700304	-2.344725
26	6	0	-0.225113	0.392030	1.323533
27	1	0	1.845219	-0.106790	1.665364
28	6	0	-1.252623	0.437090	0.382674
29	1	0	-1.845210	0.106793	-1.665403
30	1	0	-0.423160	0.700308	2.344686
31	6	0	-3.659292	0.419490	0.469550
32	6	0	-4.703073	1.339115	0.285344
33	6	0	-3.876742	-0.971570	0.421814
34	6	0	-4.725082	2.749665	0.399621
35	7	0	-5.987992	0.897254	-0.007454
36	6	0	-3.074211	-2.086543	0.773163
37	7	0	-5.152262	-1.438508	0.105852
38	6	0	-6.038723	3.147140	0.176271
39	1	0	-3.873675	3.371377	0.637918
40	5	0	-6.354920	-0.571567	-0.415605
41	6	0	-6.781839	1.976409	-0.077631
42	1	0	-2.040299	-2.053228	1.083211
43	6	0	-3.880963	-3.214005	0.669167

44	6	0	-5.151438	-2.770541	0.255126
45	1	0	-6.432122	4.154094	0.197052
46	9	0	-6.434686	-0.664385	-1.793067
47	9	0	-7.522886	-0.968083	0.199830
48	1	0	-7.832293	1.866900	-0.311399
49	1	0	-3.601831	-4.238319	0.873876
50	1	0	-6.050810	-3.340273	0.064723
51	8	0	-2.466448	0.974106	0.800323
52	8	0	2.466458	-0.974104	-0.800360

Total Energy = -1743.0279511 HF

DFT Data for BODIPY dimer 3e

Standard orientation:

Ce	enter	Ato	omic Ato	omic	Coordinate	s (Angst	roms)
	Num	ber	Number	Туре	Х	Y	Ζ
	1	6	0	4.448826	-2.533066	-1.1654	05
	2	1	0	3.538580	-3.038945	-1.4548	26
	3	6	0	5.753029	-3.008142	-1.2431	64
	4	1	0	6.079229	-3.974345	-1.6025	66
	5	6	0	6.591525	-1.978765	-0.7681	48
	6	1	0	7.667407	-1.966327	-0.6564	12
	7	7	0	5.862469	-0.907993	-0.4204	03
	8	5	0	6.366015	0.371139	0.3358	42

9	6	0	3.936718	3.266718	0.400041
10	6	0	3.059256	2.235340	0.086022
11	1	0	1.994286	2.312142	-0.077198
12	6	0	3.833372	1.051446	-0.009501
13	6	0	3.527864	-0.258880	-0.422759
14	6	0	4.526583	-1.216349	-0.651312
15	7	0	5.163032	1.379336	0.251588
16	9	0	6.619920	0.057004	1.658239
17	6	0	5.221191	2.696490	0.492995
18	1	0	6.168844	3.168043	0.715043
19	9	0	7.471207	0.902809	-0.293192
20	1	0	3.694945	4.311394	0.538633
21	6	0	1.160724	-0.288034	0.014130
22	6	0	-0.000018	0.000113	-0.700551
23	6	0	1.176926	-0.306267	1.409094
24	6	0	-1.160735	0.288292	0.014179
25	6	0	0.000038	0.000157	2.092739
26	1	0	2.087850	-0.549230	1.944719
27	6	0	-1.176892	0.306567	1.409126
28	1	0	0.000055	0.000174	3.178451
29	1	0	-2.087785	0.549543	1.944795
30	1	0	-0.000059	0.000097	-1.784460
31	6	0	-3.527870	0.259003	-0.422686
32	6	0	-4.526677	1.216399	-0.651173
33	6	0	-3.833266	-1.051360	-0.009490
34	6	0	-4.449035	2.533180	-1.165113
35	7	0	-5.862525	0.907925	-0.420228

36	6	0	-3.058967	-2.235110	0.086294
37	7	0	-5.162893	-1.379406	0.251553
38	6	0	-5.753285	3.008135	-1.242857
39	1	0	-3.538840	3.039179	-1.454484
40	5	0	-6.366086	-0.371448	0.335595
41	6	0	-6.591682	1.978662	-0.767877
42	1	0	-1.993969	-2.311707	-0.076837
43	6	0	-3.936273	-3.266563	0.400480
44	6	0	-5.220857	-2.696530	0.493176
45	1	0	-6.079570	3.974344	-1.602166
46	9	0	-7.470988	-0.903154	-0.293929
47	9	0	-6.620525	-0.057670	1.657978
48	1	0	-7.667563	1.966120	-0.656139
49	1	0	-3.694371	-4.311178	0.539313
50	1	0	-6.168449	-3.168217	0.715204
51	8	0	2.268550	-0.656615	-0.739851
52	8	0	-2.268588	0.656852	-0.739788

Total Energy = -1743.0282525 HF

DFT Data for BODIPY 3f

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)

Number Number Type X Y Z

1	6	0	2.077824	2.859575	-1.490047
2	1	0	2.606122	1.929298	-1.336088
3	6	0	2.438176	3.921568	-2.312024
4	1	0	3.319076	3.999945	-2.934100
5	6	0	1.422435	4.891918	-2.194585
6	1	0	1.343647	5.863866	-2.662809
7	7	0	0.466447	4.465177	-1.355673
8	5	0	-0.732833	5.299846	-0.788175
9	6	0	-3.415597	3.289785	0.955538
10	6	0	-2.373015	2.371195	1.001882
11	1	0	-2.399656	1.381688	1.433320
12	6	0	-1.267450	2.968636	0.344910
13	6	0	-0.000873	2.484777	-0.037939
14	6	0	0.840491	3.207532	-0.897258
15	7	0	-1.653539	4.238266	-0.083820
16	9	0	-0.266990	6.206659	0.146344
17	6	0	-2.930017	4.425093	0.279619

S19

18	1	0	-3.434314	5.351274	0.039666
19	9	0	-1.422435	5.915770	-1.810493
20	1	0	-4.414471	3.164485	1.349989
21	6	0	0.192298	0.671988	1.528564
22	6	0	-0.192298	-0.671988	1.528564
23	6	0	0.401253	1.341974	2.734046
24	6	0	-0.401253	-1.341974	2.734046
25	6	0	0.199792	0.669195	3.937964
26	1	0	0.717548	2.379840	2.717260
27	6	0	-0.199792	-0.669195	3.937964
28	1	0	-0.717548	-2.379840	2.717260
29	1	0	0.360965	1.192064	4.875477
30	1	0	-0.360965	-1.192064	4.875477
31	6	0	0.000873	-2.484777	-0.037939
32	6	0	-0.840491	-3.207532	-0.897258
33	6	0	1.267450	-2.968636	0.344910
34	6	0	-2.077824	-2.859575	-1.490047
35	7	0	-0.466447	-4.465177	-1.355673

S20

	36	6	0	2.373015	-2.371195	1.001882
	37	7	0	1.653539	-4.238266	-0.083820
	38	6	0	-2.438176	-3.921568	-2.312024
	39	1	0	-2.606122	-1.929298	-1.336088
4	40	5	0	0.732833	-5.299846	-0.788175
2	41	6	0	-1.422435	-4.891918	-2.194585
	42	1	0	2.399656	-1.381688	1.433320
	43	6	0	3.415597	-3.289785	0.955538
	44	6	0	2.930017	-4.425093	0.279619
4	45	1	0	-3.319076	-3.999945	-2.934100
4	46	9	0	1.422435	-5.915770	-1.810493
	47	9	0	0.266990	-6.206659	0.146344
4	48	1	0	-1.343647	-5.863866	-2.662809
	49	1	0	4.414471	-3.164485	1.349989
	50	1	0	3.434314	-5.351274	0.039666
	51	8	0	-0.463432	-1.255921	0.300990
	52	8	0	0.463432	1.255921	0.300990

Total energy = -1743.0216648 HF

DFT Data for BODIPY 2a

Standard orientation:

						-
Center	Ato	mic Ato	omic	Coordinate	s (Angstroi	ns)
Num	ber	Number	Туре	Х	Y Z	
	6	0	4.956889	2.762731	0.302286	-
2	1	0	4.124555	3.438210	0.458503	
3	6	0	6.293634	3.132766	0.153723	
4	1	0	6.700803	4.134150	0.176335	
5	6	0	7.021527	1.947167	-0.031018	
6	1	0	8.079237	1.806517	-0.206200	
7	7	0	6.196107	0.886657	0.015316	
8	5	0	6.556933	-0.580437	-0.394410	
9	6	0	4.077174	-3.183241	0.736635	
10	6	0	3.261886	-2.054845	0.763520)
11	1	0	2.225396	-2.014041	1.063375	5
12	6	0	4.059249	-0.955246	0.363739)
13	6	0	3.819981	0.444542	0.359005	5
14	6	0	4.906800	1.352863	0.221000)
15	7	0	5.341383	-1.430881	0.102830)
16	9	0	6.664918	-0.664901	-1.771832	2
17	6	0	5.350038	-2.754343	0.324501	l
18	1	0	6.259826	-3.322449	0.187718	3
19	9	0	7.711995	-0.990009	0.239985	5

20	1	0	3.800276	-4.195703	0.996576
21	7	0	2.580405	0.981230	0.573510
22	1	0	2.580249	1.962336	0.818945
23	6	0	1.299787	0.445069	0.286830
24	6	0	0.229890	0.779581	1.128144
25	6	0	1.058620	-0.336058	-0.850726
26	6	0	-1.058644	0.336026	0.850650
27	1	0	0.414003	1.370192	2.021492
28	6	0	-0.229914	-0.779611	-1.128222
29	1	0	1.873677	-0.587361	-1.520028
30	6	0	-1.299809	-0.445107	-0.286901
31	1	0	-1.873703	0.587334	1.519949
32	1	0	-0.414029	-1.370217	-2.021573
33	7	0	-2.580431	-0.981256	-0.573583
34	6	0	-3.819996	-0.444562	-0.359037
35	6	0	-4.906839	-1.352863	-0.221087
36	6	0	-4.059221	0.955232	-0.363663
37	6	0	-4.956967	-2.762724	-0.302464
38	7	0	-6.196133	-0.886634	-0.015372
39	6	0	-3.261813	2.054835	-0.763340
40	7	0	-5.341340	1.430887	-0.102722
41	6	0	-6.293723	-3.132731	-0.153926
42	1	0	-4.124652	-3.438217	-0.458725
43	5	0	-6.556919	0.580444	0.394449
44	6	0	-7.021582	-1.947124	0.030895
45	1	0	-2.225318	2.014020	-1.063179
46	6	0	-4.077067	3.183254	-0.736385

4	7	6	0	-5.349950	2.754366	-0.324297
4	8	1	0	-6.700920	-4.134103	-0.176604
4	9	9	0	-6.664914	0.664818	1.771876
5	0	9	0	-7.711963	0.990093	-0.239928
5	1	1	0	-8.079289	-1.806456	0.206087
5	2	1	0	-3.800133	4.195727	-0.996246
5	3	1	0	-6.259721	3.322491	-0.187481
5	4	1	0	-2.580286	-1.962352	-0.819061

Total Energy ==-1703.31845

DFT Data for BODIPY 2b

Standard orientation:

Cent	ter .	Atom	ic At	omic	Coordinate	s (Angstro	oms)
N	lumbe	er N	lumber	Туре	Х	Y	Ζ
1		6	0	-4.524764	-2.124129	1.87441	6
2		1	0	-3.605265	-2.578170	2.22352	7
3		6	0	-5.815798	-2.522936	2.22073	9
4		1	0	-6.094576	-3.329196	2.88503	8
5		6	0	-6.697197	-1.671187	1.53731	6
6		1	0	-7.778352	-1.667105	1.51945	2
7	,	7	0	-6.004410	-0.774497	0.81325	2
8	;	5	0	-6.595304	0.183235	-0.27467	4
9)	6	0	-4.287401	2.957113	-1.36156	6
10	0	6	0	-3.352097	2.065797	-0.84405	55

11	1	0	-2.283983	2.212621	-0.787528
12	6	0	-4.067263	0.938289	-0.371364
13	6	0	-3.671137	-0.195140	0.384957
14	6	0	-4.653225	-1.023551	0.997365
15	7	0	-5.421235	1.163331	-0.607371
16	9	0	-6.939822	-0.546490	-1.398925
17	6	0	-5.549721	2.362500	-1.195030
18	1	0	-6.529649	2.737197	-1.456820
19	9	0	-7.668709	0.887712	0.231645
20	1	0	-4.093658	3.927692	-1.797067
21	7	0	-2.360357	-0.493328	0.641676
22	1	0	-2.217221	-1.145848	1.400770
23	6	0	-1.195858	-0.208489	-0.115312
24	6	0	-0.000030	-0.000239	0.580853
25	6	0	-1.194248	-0.226326	-1.515722
26	6	0	1.195896	0.208398	-0.115019
27	6	0	0.000186	0.000540	-2.197546
28	1	0	-2.114152	-0.410932	-2.058235
29	6	0	1.194526	0.227012	-1.515414
30	1	0	0.000267	0.000838	-3.283484
31	1	0	2.114517	0.411900	-2.057682
32	1	0	-0.000091	-0.000550	1.668009
33	7	0	2.360304	0.492699	0.642364
34	6	0	3.671107	0.194821	0.385373
35	6	0	4.653182	1.023292	0.997711
36	6	0	4.067261	-0.938445	-0.371176
37	6	0	4.524752	2.123918	1.874712

38	7	0	6.004364	0.774370	0.813392
39	6	0	3.352091	-2.065776	-0.844273
40	7	0	5.421212	-1.163289	-0.607461
41	6	0	5.815796	2.522862	2.220819
42	1	0	3.605260	2.577835	2.224006
43	5	0	6.595222	-0.183191	-0.274710
44	6	0	6.697176	1.671169	1.537286
45	1	0	2.283991	-2.212683	-0.787671
46	6	0	4.287402	-2.956918	-1.362077
47	6	0	5.549709	-2.362304	-1.195445
48	1	0	6.094596	3.329191	2.885025
49	9	0	7.668727	-0.887663	0.231473
50	9	0	6.939660	0.546680	-1.398872
51	1	0	7.778328	1.667172	1.519262
52	1	0	4.093664	-3.927384	-1.797833
53	1	0	6.529642	-2.736890	-1.457370
54	1	0	2.217178	1.145303	1.401392

Total Energy = -1703.3178841

DFT Data for BODIPY 2c

Standard orientation:

Center	At	omic	Ato	mic	Coordii	nates (Ang	gstroms)
Numl	ber	Num	ber	Туре	Х	Y	Z

1	6	0	-2.448389	-1.843763	-2.077583
2	1	0	-1.431663	-1.735448	-2.435277
3	6	0	-3.374684	-2.786414	-2.521472
4	1	0	-3.222675	-3.547589	-3.274102
5	6	0	-4.557431	-2.560522	-1.799437
6	1	0	-5.512883	-3.062490	-1.866603
7	7	0	-4.385360	-1.543944	-0.936892
8	5	0	-5.513855	-0.821991	-0.126981
9	6	0	-4.296246	1.420868	2.646881
10	6	0	-3.140142	1.357715	1.874277
11	1	0	-2.196633	1.838759	2.085323
12	6	0	-3.424048	0.521508	0.766907
13	6	0	-2.602456	-0.023660	-0.253650
14	6	0	-3.088624	-1.073394	-1.079494
15	7	0	-4.743278	0.091796	0.884294
16	9	0	-6.275734	-0.046049	-0.982506
17	6	0	-5.259199	0.626295	2.001593

S27

18	1	0	-6.279660	0.410281	2.286629
19	9	0	-6.281494	-1.741264	0.558398
20	1	0	-4.434888	1.963398	3.571892
21	7	0	-1.294332	0.350700	-0.425150
22	1	0	-0.745742	-0.273460	-1.004933
23	6	0	-0.679114	1.605628	-0.188639
24	6	0	0.679050	1.605416	0.188234
25	6	0	-1.345049	2.821839	-0.385355
26	6	0	1.345329	2.821405	0.385132
27	6	0	-0.672722	4.023759	-0.190744
28	1	0	-2.385091	2.813469	-0.692044
29	6	0	0.673340	4.023545	0.190719
30	1	0	2.385381	2.812687	0.691778
31	1	0	-1.196654	4.961436	-0.348721
32	1	0	1.197537	4.961053	0.348817
33	7	0	1.293977	0.350252	0.424415
34	6	0	2.602249	-0.023917	0.253324
35	6	0	3.088610	-1.073007	1.079810

36	6	0	3.423764	0.520851	-0.767496
37	6	0	2.448617	-1.842644	2.078633
38	7	0	4.385407	-1.543487	0.937425
39	6	0	3.139742	1.356611	-1.875165
40	7	0	4.743147	0.091552	-0.884513
41	6	0	3.375100	-2.784784	2.523178
42	1	0	1.431937	-1.734128	2.436399
43	5	0	5.513825	-0.821993	0.126900
44	6	0	4.557729	-2.559308	1.800794
45	1	0	2.196058	1.837158	-2.086566
46	6	0	4.295937	1.419876	-2.647628
47	6	0	5.259054	0.625840	-2.001937
48	1	0	3.223320	-3.545347	3.276472
49	9	0	6.281128	-1.741651	-0.558322
50	9	0	6.276042	-0.045900	0.981965
51	1	0	5.513257	-3.061093	1.868268
52	1	0	4.434547	1.962164	-3.572786
53	1	0	6.279608	0.410021	-2.286787

S29

Figure S17. Comparison of ¹H NMR of aryloxy substituted BODIPYs (**3d-3f**).

Figure S18. Comparison of ¹H NMR of arylaza substituted BODIPYs (**2a-2c**).

2a¹¹B NMR

2b¹¹B NMR

8 7 6 5 4 3 2 1 -2 -3 -4 -5 -6 -7 Cherrical Shift (ppri)

 $2c^{11}B$ NMR

3d¹¹B NMR

3e ¹H NMR

-0.11 -0.11 -0.11

 16
 14
 12
 10
 8
 6
 4
 2
 0
 -2
 -4
 -6
 -8
 -10
 -12
 -14

 Chemical Shift (ppm)

3e ¹³C NMR

3e¹¹B NMR

3f¹H NMR

(2) (a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009; (b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789; (c) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 1372–1377; (c) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 270-283; (d) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees and J. A. Pople, J. Chem. Phys., 1982, 77, 3654-3665.

⁽¹⁾ G. Gritzner and J. Kuta, Pure Appl. Chem., 1984, 56, 461.