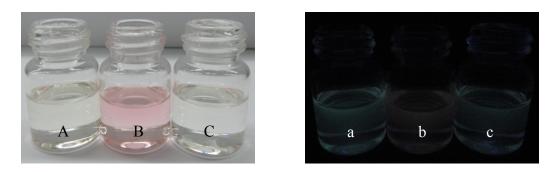
Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Electronic Supplementary Information

Optical chemosensors for Hg²⁺ from terthiophene appended rhodamine derivatives : FRET based molecular and *in situ* hybrid gold nanoparticles sensors


Chatthai Kaewtong,*[†] Noi Niamsa,[†] Banchob Wanno,[†] Nongnit Morakot,[†] Buncha Pulpoka[‡] and Thawatchai Tuntulani[‡]

[†]Nanotechnology Research Unit and Supramolecular Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand.Fax: 66 0437 54246; Tel: 66 0437 54246; E-mail: <u>kchatthai@gmail.com</u>

*Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. Fax: 66 0221 87598; Tel: 66 0221 87643.

Contents

Figure S1. Color changes (A, B, C) and fluorescence changes (a, b, c) of RhoT (10 mM) in the presence of 10 μ M of various metals.	S3
Figure S2. ¹ H NMR spectra of RhoT in DMSO-d ₆ in the presence (a) and absence (b) of Hg^{2+} .	S3
	S4
Figure S3. Absorption spectra changes of RhoT (10 μ M) in	54
0.01 mol/L of TBAPF ₆ in DMSO to 10 μ M of various cations.	~ .
Table S1. Complexation energies obtained at the	S4
B3LYP/LanL2DZ level of theory.	
Table S2. Energy gaps (E_{gap} , in eV) of ligand and its complexes	S4
obtained at the B3LYP/LanL2DZ level of theory.	
Figure S4. Plots of HOMO (left) and LUMO (right) orbitals of	S5
(a) L, (b) L-Hg ²⁺ (1:1) and (c) 2L-Hg ²⁺ (2:1)	
Figure S5. UV-vis absorption spectra of rhodamine	S5
functionalized with terthiophene (RhoT) 10^{-3} M before and	20
after treated with AuCl ₃ at different time	0(
Figure S6 (a) Absorption spectra and (b) fluorescence spectra	S6
AuNPs-RhoT in 50:50, DMSO:H ₂ O in the presence of	
different amounts of Hg ²⁺ , E_x =520 nm.	
Figure S7. ¹ H NMR spectrum of N-(rhodamine B)lactam-	S7
ethylenediamine (Rho).	
Figure S8. Mass spectrum of fluorescent chemosensor (RhoT).	S7
Figure S9. ¹ H NMR of fluorescent chemosensor (RhoT).	S8
i gute soo in tunit of indofescent enemosensor (itild1).	50

Figure S1. Color changes (A, B, C) and fluorescence changes (a, b, c) of **RhoT** (10 mM) in the presence of 10 μ M of various metals. (A, a) **RhoT** only, (B, b) **RhoT** + Hg²⁺, (C, c) **RhoT** + other metals.

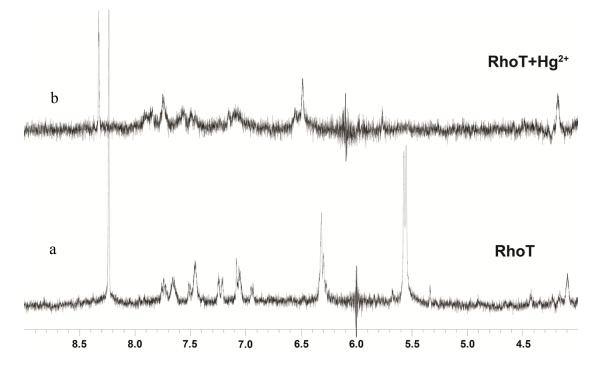
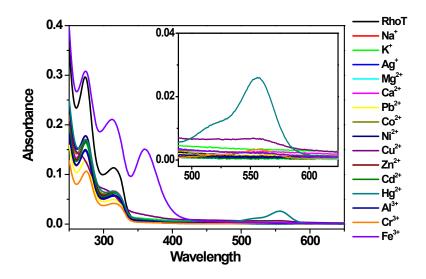


Figure S2.¹H NMR spectra of RhoT in DMSO-d₆ in the absence (a) and presence (b) of Hg^{2+} .



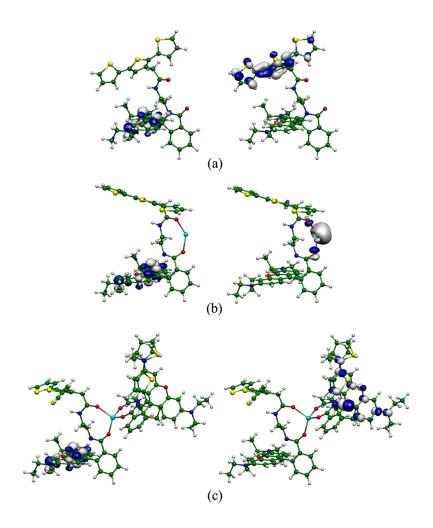

Figure S3. Absorption spectra changes of RhoT (10 μ M) in 0.01 mol/L of TBAPF₆ in DMSO to 10 μ M of various cations.

 Table S1. Complexation energies obtained at the B3LYP/LanL2DZ level of theory.

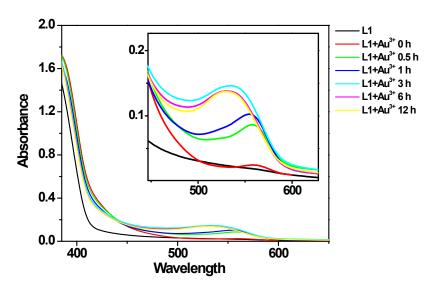

Complexation	ΔE (kcal/mol)		
RhoT + Hg ²⁺ \rightarrow RhoT •Hg ²⁺	-276.28		
2 RhoT + Hg ²⁺ \rightarrow 2 RhoT •Hg ²⁺	-350.47		

Table S2. Energy gaps (E_{gap} , in eV) of ligand and its complexes obtained at the B3LYP/LanL2DZ level of theory.

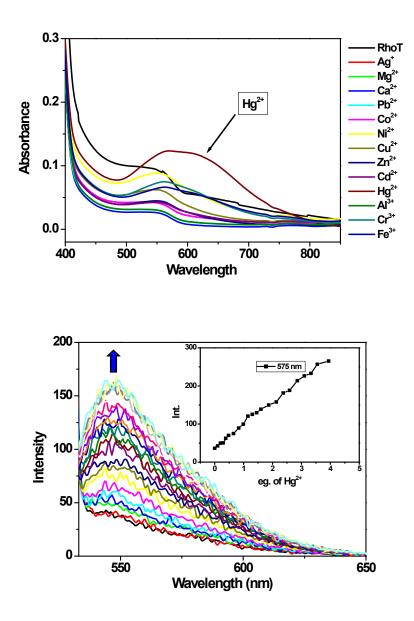

	$E_{ m HOMO}$	$E_{\rm LUMO}$	$E_{\rm gap}$
RhoT	-5.306	-1.769	3.537
RhoT-Hg ²⁺	-9.497	-9.089	0.408
2 RhoT- Hg ²⁺	-8.626	-5.769	2.857
2 RhoT- Hg ²⁺	-8.626	-5.769	2.85

Figure S4. Plots of HOMO (left) and LUMO (right) orbitals of (a) L, (b) L-Hg²⁺ (1:1) and (c) 2L-Hg²⁺ (2:1) obtained at the B3LYP/LanL2DZ level of theory, the O-Hg bond distances are in Å.

Figure S5. UV-vis absorption spectra of rhodamine functionalized with terthiophene (**RhoT**) 10^{-3} M before and after treated with AuCl₃ at different time (0–12 hour). AuNPs showed their characteristic absorption bands at 570 nm.

Figure S6 (a) Absorption spectra and (b) fluorescence spectra **AuNPs-RhoT** in 50:50, DMSO:H₂O in the presence of different amounts of Hg²⁺, E_x =520 nm.

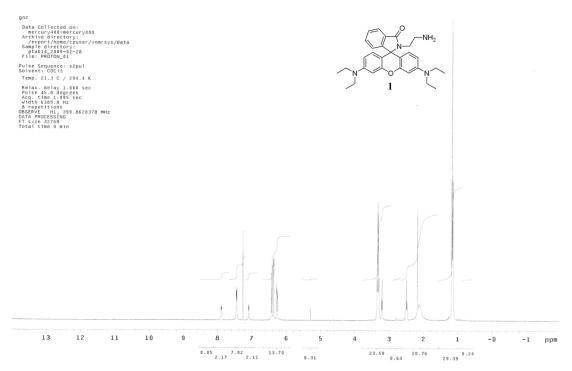


Figure S7. ¹H NMR spectrum of N-(rhodamine B)lactam-ethylenediamine (Rho).

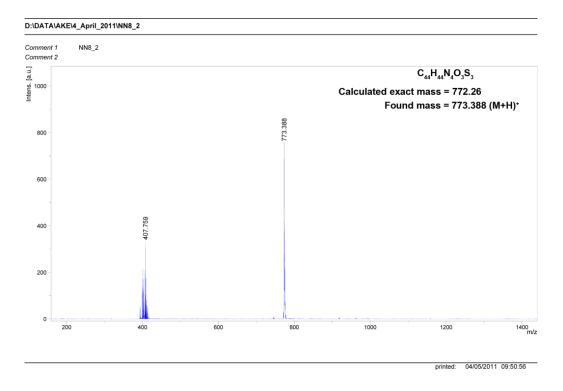
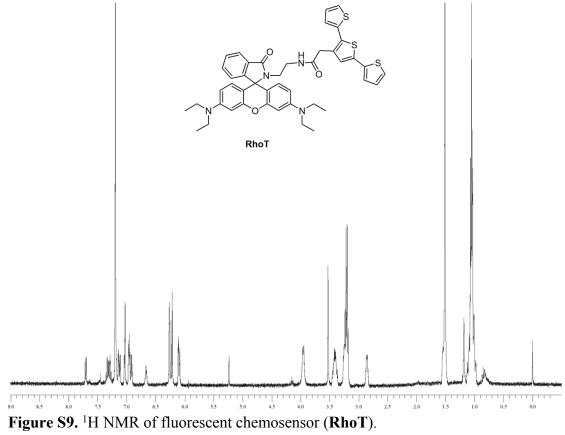



Figure S8. Mass spectrum of fluorescent chemosensor (RhoT).

