Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supplementary Information

Enhanced properties of porous CoFe₂O₄-reduced graphene oxide composite with alginate binder for Li-ion battery applications

P. Ramesh Kumar^a, Pratap Kollu^b*, Chella Santhosh^c, Eswara Varaprasada Rao. K^d, Do Kyung Kim^a* and Andrews Nirmala Grace^c*

^a Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.

^b DST-INSPIRE Faculty, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India

^c Centre for Nanotechnology Research, VIT University, Vellore- 632014, India

^d Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India

Figure S1: EDS spectrum for the pure $CoFe_2O_4$ sample

Figure S2. TEM images of CoFe₂O₄ +rGO composites at various magnifications.

Figure S3: TGA analysis of CoFe₂O₄ + rGO composites

Figure S4 a) Discharge capacity vs. cycle number plots and b) Galvanostatic charge–discharge curves of $CoFe_2O_4+20\%$ rGO composite with PVDF binder at 0.1C rate.

Figure S5: a) Specific capacity function of cycle number and b) charge-discharge curves for the pure CoFe₂O₄ nanoclusters with alginate binder.

Figure S6: (a) N_2 adsorption–desorption isotherm and (b) dV/dD pore volume vs. pore diameter curve of $CoFe_2O_4 + 20\%$ rGO.

Figure S7: Nyquist plots for the pure $CoFe_2O_4$ nanoclusters sample while a) 1st discharging, b) 1st charging state and c) equivalent circuit for impedance plots.

Voltage (V) Pure CoFe₂O₄ $CoFe_2O_4+20\%$ rGO with CoFe₂O₄+20% rGO with **PVDF** alginate W_d W_d W_d R_(SF+CT) CPE CPE CPE R_e R_e R_(SF+CT) Re R_(SF+CT) (Ω) (Ω) (F) (Ω) (Ω) (F) **(**Ω**)** (F) (Ω) Discharging OCV 3.4 0.00 3.8 0.01 30.2 0.7 0.05 23 0.8 33.8 0.7 4.5 7 7 7 2 57 54 76.2 0.8 0.04 3.3 0.7 0.05 3.5 0.8 0.01 4.6 3 5 1.6 3.3 58 0.7 0.03 3.4 69 4.7 98.0 0.8 0.01 0.8 0.05 1 7 0.8 3.5 68 0.7 0.2 3.8 87 0.8 0.01 4.6 143 0.7 0.22 2 8 54 0.2 0.47 0.4 3.5 0.8 3.8 82 0.8 0.27 4.4 147 0.8 3 0.8 0.002 3.5 61 0.8 4.3 3.5 73 1.2 4.0 156.7 0.8 0.4 2 Charging 89 65 0.2 0.8 0.24 138 0.8 0.6 0.6 3.6 0.8 3.6 4.0 1.2 3.5 75 0.8 0.12 3.6 100 0.7 0.16 4.1 91 0.7 0.3 2 3.7 64 0.7 0.1 3.6 74 42 0.7 0.7 0.07 4.0 0.1 3 3.8 64 0.7 0.00 3.3 72 0.8 0.01 4.2 33 0.7 0.01 4

Table S8: Impedance parameters of the pure $CoFe_2O_4$, $CoFe_2O_4 + 20\%$ rGO with PVDF and alginate binders during the 1st discharge–charge cycles at various voltages.