Supporting data

Influence of Precursor on Phase evolution of nano iron oxide/ oxyhydroxides: optical and magnetic properties

K. Rout*1, M. Mohapatra1, S. Layek², A. Dash¹, H. C. Verma², S. Anand¹** ¹Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India ²Department of Physics, Indian Institute of Technology, Kanpur 208016, UP, India

Table S₁ Some of the recent literature on synthesis of iron oxides/oxyhydroxides

Method	Procedure	Result						
Hydrothermal ¹⁹	K ₃ Fe(CN) ₆ , NaOH solutions. Heated to	Flowerlike α -Fe ₂ O ₃						
-	120-200 °C in autoclave							
Calcination ²⁰	FeCl ₃ .6H ₂ O solution heated at100 ^o C for 4	α -Fe ₂ O ₃ nanorods with an						
	h, After drying annealed in a tube furnace	average L of 400 nm and dia						
	at 350°C for 2h.	of 75 nm.						
Solvothermal ²¹	Ferrous ammonium sulfate, H ₂ O ₂ , pH 3,	Crystallization to goethite						
	24 h stirring.	and/or hematite.						
Solvothermal ²²	Ferric chloride, ethanol. Heated to 180 °C	Peanut-like α -Fe ₂ O ₃ super						
	for 15 h in autoclave	structures.						
Hydrothermal ²³	$FeSO_4 \cdot 7H_2O$, $NaClO_3$ · Heated to 160- 180	Three-dimensional (3D)						
	°C for several hours in autoclave	urchin-like α -Fe ₂ O ₃ nanorods						
Solvothermal ²⁴	Ferric acetylacetonate distilled water.Heated	Different product morpholog-						
	at temperatures (140–180 °C) and reaction	ies of α -Fe ₂ O ₃ .						
XX 1 1 125	times (1.5–12 h)							
Hydrothermal ²³	FeCl ₃ , FeNO ₃ . Urea, NaH ₂ PO ₄ /NH ₄ OH.	Nano rod/ellipsoidal α -Fe ₂ O ₃						
	Solution heated at 90 °C for 3h followed							
Calainstian ²⁶	by autoclave 115°C 24 h,							
Calcination ²⁰	FeCl ₃ , FeCl ₂ , HCl, NH ₃ Mixed solutions	Nano particle α -Fe ₂ O ₃						
	kept at room temperature for 2h. Calcined							
Hydrothermal	in air at 500 °C for $1-2$ n.							
calcination ²⁷	In block copolymer $(HO(CH_2CH_2O))$	different unique morphology						
calemation	$(E_{12}^{-1})_{100}^{-1} = C_{12}^{-1} = C$	unique morphology.						
	$(F127)$, EG, Fe(INO_3) ³ ·9 I_2O . Vigorous							
	stiffing 2 ii, aged iii all at 40 °C for 7 days, gradual basting to $150 ^{\circ}C$ (1 °C/min) and							
	maintaining at 150 °C for 24 h Finally							
	sintered at 400 °C for 5 h							
Hydrothermal	FeCl ₂ NaOH autoclayed 150 $^{\circ}$ C for 18 h	α -Fe ₂ Ω_2 nanostructure with						
calcination ²⁸	Washed upto pH 7 dried at 100 °C	different unique morphology						
	calcined 600 °C for 1 h	anterent unique morphology						

II 1 41 129	$\Gamma()$ $(1 1 \Pi (1) (1 1)$	N 4 11° 1 4°4
Hydrothermal ²⁹	$Fe(acac)_3$, ethanol. Heated in autoclave at	Mesocrystalline hematite
	150 °C for 24 h	nanoplates
Microwave-	Fe(NO ₃) ₃ , NaHCO ₃ microwaved until	Porous Y-shaped hematite rods
aging-	boiling ,aged for 3 days. pH adjusted at 12	
Calcination ³⁰	aged at 90 °C for 30–168 h. heated at	
	300°C in air for 1 h	
Calcination ¹	The ferric nitrate heated up to $800 {}^{0}\text{C}$	Pomegranate-like hematite
	for 4 h.	
Hydrothermal ³¹	Ferric chloride, urea were added into the	3D hierarchical hematite
5	THF- ethanol mixture followed by the	nanostructure.
	addition of PVP under ultrasonic	
	conditions for a few minutes Heated in	
	autoclave at 180 °C for 12 h Dried in air	
	at 60° C for 6 h	
Surfactant	CTAB ferric chloride solution Stirred to	α -Fe ₂ Ω_2 nano rhombohedra
mediated.	form homogeneous clear solution Heated	nanorods and nanocubes
hydrotermal ³²	in autoalaya at 120% for 12 h	hanorous, and hanoeubes
nyuluteimai	In autociave at 120°C 101 12 II.	
Hydrothermal	Ferric nitrate sodium citrate and urea	α -Fe ₂ O ₂ porous
calcination ³³	solution heated at $160 ^{0}$ C for 10 h in	nanosnheres
calemation	solution heated at 100°C for 10 h m	nanospheres
	autoclave. Freeplicite washed with	
	C for 4 h. Heating the uncomparing in single	
	\circ C for 4 n. Heating the precursor in air at	
D	500 °C for 2 h.	
Precipitation ³⁴	Ferric nitrate, KOH, final pH 6.5	goethite rods
D · · · · · 35	ageing	
Precipitation	Ferric nitrate, NaNO ₃ , NaOH, pH 8	Nano ferrihydrite
D · · · · · 26	ageing	None family duite
Precipitation36	Ferric nitrate, NaOH, pH /	ivano terrinyarite
D	ageing	Nano ferribudrite
Precipitation ³⁷	Ferric chloride, NaOH, pH 7	

Annealing	Sample	MCD (nm)	a=b (Å)	c (Å)
Temperature				
(^{0}C)				
400	K_1	16±3	5.0497	13.7983
	K_2	22±3	5.0494	13.7958
	K ₃	9±2	5.0489	13.8003
	K_4	35±3	5.0503	13.7978
600	K_1	46±4	5.0506	13.7996
	K_2	49±5	5.0508	13.7943
	K ₃	25±3	5.0499	13.7983
	K_4	57±5	5.0483	13.8018
800	K_1	96±6	5.0526	13.7966
	K_2	113±4	5.0523	13.7979
	K ₃	58±4	5.0516	13.7993
	K_4	106±5	5.0497	13.8003

Table S₂. Crystallite Size and Lattice Parameters of K₁, K₂, K₃ and K₄ Samples Annealed at 400, 600 and 800 0 C.

Sample	IS(mm/s) (±0.02)	QS(mm/s) (±0.02)	LWD(m m/s) (±0.02)	$B_{\rm HF}({\rm T})$ (±0.1)	Area (%) (±2)	Phase
K_1	0.34	-0.23	0.33	37.8	66	Goethite
	0.35	-0.23	0.43	34.3	34	Goethite
K ₂	0.30	0.67	0.42	-	66	Ferrihydrite
	0.36	-0.19	0.36	50.7	20	Hematite
	0.38	-0.29	0.36	37.0	5	Goethite
	0.34	-0.25	0.35	33.4	9	Goethite
K ₃	0.31	0.68	0.43	-	100.0	Ferrihydrite
K_4	0.30	0.67	0.40	-	40	Ferrihydrite
	0.36	-0.19	0.27	51.0	38	Hematite
	0.34	-0.24	0.45	37.4	13	Goethite
	0.26	-0.23	0.44	31.8	9	Goethite

Table S₃. Mössbauer Parameters I.E., Isomer Shift (IS), Quadruple Splitting (QS), Hyperfine Field ($B_{\rm HF}$), Line Width (LWD) and Area Ratios Of The Phases Indicated at the Right Most Columns of As-Prepared Samples.

Peak position in Raman spectra for various ann 400 °C 600 °C					us annealed	inealed samples 800 °C					
	Peak positions cm ⁻¹										
K_1	K ₂	K_3	K_4	K_1	K ₂	K ₃	K4	K_1	K_2	K ₃	K_4
220	224	224	224	229	229	229	229	229	231	229	229
290	290	290	290	294	294	294	294	297	297	297	297
400	407	407	407	407	407	407	407	411	411	411	411
500	500	500	500	500	500	500	500	493	500	493	493
609	611	611	611	611	611	611	611	612	612	612	612
								659	-	659	-
1305	5 1314	1314	4 1314	1316	1322	131	6 1316	1322	1322	2 132	22 1322
Literature (hematite) Assignment											
226 $A_{1g}(1)$ Fe-Osym str											
247					Eg(1) Fe-O sym.bend						
292					Eg(2)+Eg(3)Fe-Osym.bend						
406						Eg(4)Fe-O sym.bend					
495 A _{1g} (2)Fe-O						-Osyn	n str				
600, 613					Eg(5)Fe-O sym bend						
1320					2 nd harmonic vib						

Table S₄. Raman Data for Annealed K₁, K₂, K₃ And K₄ Samples

Fig. S₁. Mössbauer spectra of the samples annealed at 600 ^oC and 800 ^oC.

Fig. S_2 . Raman spectra of as-prepared nano iron oxide samples.

Fig. S₃. UV-Visible spectra of a typical annealed sample (K_2 sample annealed at 400 0 C).