Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supporting Information

Energetic Salts from Phenolate Derivatives

Dharavath Srinivas,^a Vikas D. Ghule,^b Krishnamurthi Muralidharan*^{a,c}

^a Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad-500 046 (India)

^b Department of Chemistry, National Institute of Technology, Kurukshetra-136119, Haryana (India).

^c School of Chemistry, University of Hyderabad, Hyderabad-500 046 (India).

*Corresponding author: E-mail: <u>kmsc@uohyd.ernet.in</u>

Table 1. Total Energy (E_0), Zero Point Energy (ZPE) and Thermal Correction (ΔH_T) at the B3PW91/6-31G(d,p) Level, gas phase heat of formation, molecular surface properties, heat of sublimation and calculated solid state heat of formation for the heterocyclic compounds selected for salt preparation.

Compd.	E_0^{a}	ZPE ^b	$\Delta H_{\mathrm{T}}^{\mathfrak{c}}$	HOF _{Gas} ^d	Ae	$\sigma^{2}_{tot}{}^{f}$	v ^g	HOF _{Sub} ^h	HOF _{Solid} ⁱ
4-Amino-4H- 1,2,4-triazole	-297.36933	0.0764	0.0059	336.02	114.21	445.85	0.25	99.86	236.16
3-Amino-1,2,4- triazole	-297.42696	0.0763	0.0056	171.11	112.32	240.37	0.24	78.98	92.13 (77) ²
3,5-Diamino- 1,2,4-triazole	-352.75304	0.0942	0.0074	157.90	127.75	272.84	0.24	86.55	71.35
3,4- Diaminofurazan	-372.54123	0.0782	0.0069	196.34 (143) ¹	122.90	411.67	0.22	95.57	100.77
Guanidine	-205.22149	0.0766	0.0055	31.06	97.43	262.99	0.24	77.98	-46.92 (-56) ³

^aTotal energy (a.u.). ^bZero point energy (a.u.). ^cThermal correction (a.u.). ^dHeat of formation in gas phase (kJ/mol). ^eArea of the isosurface of 0.001 electrons/bohr³ electronic density (Å²). ^fMeasure of variability of the electrostatic potential (kJ/mol). ^gDegree of balance between the positive and negative surface potentials. ^hHeat of sublimation (kJ/mol). ⁱHeat of formation in solid state (kJ/mol).

References:

(1) Li, X.; Zhang, R.; Zhang, X. Struct. Chem. 2012, DOI 10.1007/s11224-012-0147-3.

(2) Williams, M. M.; McEwan, W. S.; Henry, R. A. J. Phys. Chem. 1957, 61, 261.

(3) Kirpichev, E. P.; Titov, L. V.; Rubtsov, Yu. I.; Gavrilova, L. A. Russ. J. Phys. Chem. (Engl. Transl.) **1968**, 42, 269.

Table 2. Total Energy (E_0), Zero Point Energy (ZPE) and Thermal Correction (ΔH_T) at the B3PW91/6-31G(d,p) Level and gas phase heat of formation, molecular surface properties, heat of sublimation and calculated solid state heat of formation for the nitrophenols.

Compd.	E_0^{a}	ZPE ^b	$\Delta H_{\mathrm{T}}^{\mathrm{c}}$	HOF _{Gas} ^d	Ae	$\sigma^{2}_{tot}{}^{f}$	$v^{ m g}$	HOF _{Sub} ^h
Pierie acid	-920 49172	0.1131	0.0128	_172.12	205 52	132.38	0.21	96.32
	-)20.4)172	0.1151	0.0120	-1/2.12	205.52	152.50	0.21	70.52
2,4,6-Trinitro-m-cresol	-959.76295	0.1411	0.0154	-196.86	222.13	96.02	0.22	99.28
2 A - i la 2 A C triaitment and	1002 00004	0.11/0	0.01//	125.46	225 (0	120.71	0.10	100.20
3-Azido-2,4,6-trinitrophenol	-1083.99084	0.1160	0.0166	135.46	235.68	138./1	0.18	109.20
Styphnic acid	-995.68373	0.1173	0.0135	-386.42	209.51	136.40	0.22	99.00
2,4,6-Trinitro-1,3,5-benzenetriol	-1070.87403	0.1219	0.0153	-549.57	216.67	161.04	0.20	104.50

^aTotal energy (a.u.). ^bZero point energy (a.u.). ^cThermal correction (a.u.). ^dHeat of formation in gas phase (kJ/mol). ^eArea of the isosurface of 0.001 electrons/bohr³ electronic density (Å²). ^fMeasure of variability of the electrostatic potential (kJ/mol). ^gDegree of balance between the positive and negative surface potentials. ^hHeat of sublimation (kJ/mol).

Reported sensitivity studies of selective nitrophenols [R. Meyer, J. Kohler, A. Homburg, Explosives, 6th Ed., Wiley VCH, Weinheim, 2007]:

1. Picric acid:

Impact sensitivity: 0.75 kpm = 7.4 Nm Friction sensitivity: up to 353 N Critical diameter of steel sleeve test: 4 mm

2. Styphnic acid:

Impact sensitivity: 0.75 kp m = 7.4 N m

Friction sensitivity: at 36 kg = 353 N Critical diameter of steel sleeve test: 14 mm

3. 2,4,6-Trinitrocresol:

Impact sensitivity: 1.2 kp m = 12 N m Friction sensitivity: up to 36 kp = 353 N

Computational Details

The geometries of the designed compounds were fully optimized without any symmetry restriction using density functional theory (DFT) at the B3PW91 functional with the 6-31G(d,p) basis set in the Gaussian 03 software package.¹ All of the optimized structures were characterized to true local energy minima on the potential-energy surface without imaginary frequencies. The isodesmic reaction used for the prediction of gas phase HOF (HOF_{*Gas*}) of designed compounds is shown in Scheme 7. For estimation of the potential performance of the energetic material, it is also significant to calculate their solid phase HOF (HOF_{*Solid*}) because it is related directly with the detonation characteristics. According to Hess' law, solid phase HOF can be obtained by,

$$HOF_{Solid} = HOF_{Gas} - HOF_{Sub}$$
(1)

where HOF_{Sub} is the heat of sublimation and can be evaluated by the Byrd and Rice method² in the framework of the Politzer approach,³ using the following empirical relation,

$$HOF_{Sub} = \beta_1 A^2 + \beta_2 (\nu \sigma_{tot}^2) + \beta_3$$
(2)

where A is the area of the isosurface of 0.001 electrons/bohr³ electronic density, *v* indicates the degree of balance between the positive and negative surface potentials, σ^2_{tot} is a measure of variability of the electrostatic potential, and β_1 , β_2 , and β_3 are determined through a least-squares with the experimental HOF_{Solid} of a selected set of known materials.² Surface area, degree of balance between the positive and negative surface potentials and variability of the electrostatic potential surface potentials and variability of the electrostatic potential are calculated using WFA program.⁴

The lattice potential energies and lattice energies were predicted using Jenkins approach.⁵ In the Jenkins equation^{5d} for the 1:3 salts the *generalised* parameters α and β were utilized with appropriate ionic strength values, I = 6. Based on a Born-Haber cycle (Fig. 1), the heat of formation of a salt can be simplified by the formula,

HOF (salt, 298 K) = HOF (cation, 298 K) + HOF (anion, 298 K) -
$$H_L$$
 (3)

where H_L is the lattice enthalpy of the ionic salts. HOF of an ionic compound can be simplified by subtracting the lattice energy of the salt (H_L) from the sum of the HOFs of the cation and anion according to Equation (3). The HOF of the cations and anions were computed by using the method of isodesmic reactions. The lattice enthalpy (H_L) could be predicted by the formula suggested by Jenkins et al.^{5a} using its lattice potential energy (U_{POT} , kJ/mol) as,

$$H_{\rm L} = U_{\rm POT} + 2RT \text{ for } 1:1 \text{ salt}$$
(4)

$$H_{\rm L} = U_{\rm POT} + 3RT \text{ for } 2:1 \text{ salt}$$
(5)

$$H_{\rm L} = U_{\rm POT} + 4RT \text{ for } 3:1 \text{ salt}$$
(6)

The lattice potential energy U_{POT} (kJ/mol) can be predicted from four different approaches as suggested by Jenkins et al.^{5b,c} using following equations,

$$U_{\rm POT} = AI(2I/V)^{1/3}$$
 (7)

$$U_{\rm POT} = {\rm B} (I^4 \rho / {\rm M})^{1/3}$$
 (8)

$$U_{\rm POT} = \gamma (\rho/M)^{1/3} + \delta \tag{9}$$

$$U_{\rm POT} = 2I[\alpha(V)^{-1/3} + \beta]$$
(10)

In above equations (7-10), *I* is the ionic strength, ρ is the density (g/cm³), V is the estimated volume of ionic material (nm³), M is the chemical formula mass of the ionic material (g/mol), and the coefficients A, B, γ (kJ/mol.cm), δ (kJ/mol), α , and β are taken from the literature.⁵ Equations (9) and (10) are used to calculate the lattice potential energy for salts with 1:1 and 2:1 charge ratio. Equation (7) is normally employed for salts likely to have lattice energy greater than 5000 kJ/mol but it seems to work quite well in this case and for these materials.

The empirical Kamlet-Jacobs⁶ equations were employed to estimate the values of D and P for the high energy materials containing C, H, O and N as following equations:

$$D = 1.01 (\text{NM}^{0.5} Q^{0.5})^{0.5} (1 + 1.30 \rho_{\text{o}})$$
(11)
$$P = 1.55 \rho_{\text{o}}^{2} \text{NM}^{0.5} Q^{0.5}$$
(12)

where in above equations *D* is detonation velocity (km/s), *P* is detonation pressure (GPa), N is moles of gaseous detonation products per gram of explosives, M is average molecular weights of gaseous products, *Q* is chemical energy of detonation (cal/g) defined as the difference of the HOFs between products and reactants, and ρ_0 is the density of explosive (g/cm³).

References

(1) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T., Jr.; Kudin, K. N.; Burant, J. C.; et al. *Gaussian 03*, revision A.1; Gaussian, Inc.: Pittsburgh, PA, 2003.

- (2) Byrd, E. F. C.; Rice, B. M. J. Phys. Chem. A 2006, 110, 1005.
- (3) (a) Politzer, P.; Murray, J. S.; Grice, M. E.; Desalvo, M.; Miller, E. *Mol. Phys.* 1997, *91*, 923.
 (b) Politzer, P.; Murray, J. S. *Fluid Phase Equilibria* 2001, *185*, 129.
- (4) Bulat, F. A.; Toro-Labbe, A.; Brinck, T.; Murray, J. S.; Politzer, P. J. Mol. Model. 2010, 16, 1679.

(5) (a) Jenkins, H. D. B. J. Chem. Educ. 2005, 82, 950. (b) Jenkins, H. D. B.; Tudela, D.; Glasser, L. Inorg. Chem. 2002, 41, 2364. (c) Glasser, L.; Jenkins, H. D. B. J. Am. Chem. Soc.

2000, *122*, 632. (d) Jenkins, H. D. B.; Roobottom, H. K.; Passmore, J.; Glasser, L. *Inorg. Chem.* **1999**, *38*, 3609.

(6) (a) Kamlet, M. J.; Jacobs, S. J. J. Chem. Phys. **1968**, 48, 23. (b) Kamlet, M. J.; Ablard, J. E. J. Chem. Phys. **1968**, 48, 36.

Experimental data

	Dictric acid
1	
	a. ¹ HNMR, b. ¹³ CNMR, c. DSC-TGA
	4H-1,2,4-Triazol-4-aminium 2,4,6-trinitrophenolate (1a)
2	
	a. ¹ HNMR, b. ¹³ CNMR, c. DSC-TGA
	3-Amino-1 <i>H</i> -1,2,4-triazol-4-ium-2,4,6-trinitrophenolate (1b)
3	a ¹ HNMR b ¹³ CNMR c DSC-TGA
4	3,5-Diamino-1 <i>H</i> -1,2,4-triazol-4-ium-2,4,6-trinitrophenolate (1c)
т	a. ¹ HNMR, b. ¹³ CNMR, c. DSC-TGA
	3 4-Diamino-1 2 5-ovadiazol-2-ium 2 4 6-trinitronhenolate (1d)
5	5, 1 Diamino 1,2,5 Okadazor 2 Tan 2, 1,6 amin'ophonolate (14)
	a. ¹ HNMR, b. ¹³ CNMR, c. DEPT, d. DSC-TGA
	Diaminomethaniminium-2,4,6-trinitrophenolate (1e)
6	a ¹ HNMR b ¹³ CNMR c DSC-TGA
7	2,4,6-Trinitro-m-cresol
1	a. ¹ HNMR, b. ¹³ CNMR, c. DEPT, d. DSC-TGA
	AH 1 2 4 Triazal 4 aminjum 3 mathyl 2 4 6 trinitrophanolate (2a)
8	411-1,2,4-111az01-4-ammuni 5-metriy1-2,4,0-timit opnenolate (2a)
	a. ¹ HNMR, b. ¹³ CNMR, c. DEPT, d. DSC-TGA
	3-Amino-1 <i>H</i> -1,2,4-triazol-4-ium 3-methyl-2,4,6-trinitrophenolate (2b)
9	a HNMP & BCOMP & DSC TGA
	a. IIINIMR, U. CONMR, C. DSC-TOA
10	3,5-Diamino-1 <i>H</i> -1,2,4-triazol-4-ium 3-methyl-2,4,6-trinitrophenolate (2c)
10	a. ¹ HNMR, b. ¹³ CNMR, c. DEPT, d. DSC-TGA

11	3,4-Diamino-1,2,5-oxadiazol-2-ium 3-methyl-2,4,6-trinitrophenolate (2d)
	a. ¹ HNMR, b. ¹³ CNMR, c. DEPT, d. DSC-TGA
12	Diaminomethaniminium 3-methyl-2,4,6-trinitrophenolate (2e)
	a. ¹ HNMR, b. ¹³ CNMR, c. DSC-TGA
13	3-Azido-2,4,6-trinitrophenol
	a. ¹ HNMR, b. ¹³ CNMR, c. DEPT, d. DSC-TGA
14	3-Amino-1H-1,2,4-triazol-4-ium 3-azido-2,4,6-trinitrophenolate (3b)
	a. ¹ HNMR, b. ¹³ CNMR, c. DSC-TGA
15	3,5-Diamino-1H-1,2,4-triazol-4-ium 3-azido-2,4,6-trinitrophenolate (3c)
13	a. ¹ HNMR, b. ¹³ CNMR, c. DSC-TGA
16	3,4-Diamino-1,2,5-oxadiazol-2-ium 3-azido-2,4,6-trinitrophenolate (3d)
10	a. ¹ HNMR, b. ¹³ CNMR, c. DSC-TGA
17	Diaminomethaniminium 3-azido-2,4,6-trinitrophenolate (3e)
	a. ¹ HNMR, b. ¹³ CNMR, c. DSC-TGA
18	Styphnic acid
	a. ¹ HNMR, b. ¹³ CNMR, c. DSC-TGA
19	Bis(3-amino-1H-1,2,4-triazol-4-ium) 2,4,6-trinitrobenzene-1,3-diolate (4b)
	a. ¹ HNMR, b. ¹³ CNMR, c. DEPT, d. DSC-TGA
20	Bis(3,5-diamino-1H-1,2,4-triazol-4-ium) 2,4,6-trinitrobenzene-1,3-diolate (4c)
	a. ¹ HNMR, b. ¹³ CNMR, c. DEPT, d. DSC-TGA
21	Bis(3,4-diamino-1,2,5-oxadiazol-2-ium) 2,4,6-trinitrobenzene-1,3-diolate (4d)
	a. ¹ HNMR, b. ¹³ CNMR, c. DEPT, d. DSC-TGA

22	Bis(diaminomethaniminium) 2,4,6-trinitrobenzene-1,3-diolate (4e)
	a. ¹ HNMR, b. ¹³ CNMR, c. DEPT, d. DSC-TGA
23	2,4,6-Trinitro-1,3,5-benzenetriol
23	a. ¹ HNMR, b. ¹³ CNMR, c. DSC-TGA
24	Tris(4H-1,2,4-triazol-4-aminium) 2,4,6-trinitrobenzene-1,3,5-triolate (5a)
27	a. ¹ HNMR, b. ¹³ CNMR, c. DEPT, d. DSC-TGA
25	Tris(3-amino-1H-1,2,4-triazol-4-ium) 2,4,6-trinitrobenzene-1,3,5-triolate (5b)
	a. ¹ HNMR, b. ¹³ CNMR, c. DEPT, d. DSC-TGA
26	Tris(3,5-diamino-1H-1,2,4-triazol-4-ium) 2,4,6-trinitrobenzene-1,3,5-triolate (5c)
	a. ¹ HNMR, b. ¹³ CNMR, c. DSC-TGA
2.7	Tris(3,4-diamino-1,2,5-oxadiazol-2-ium) 2,4,6-trinitrobenzene-1,3,5-triolate (5d)
27	a. ¹ HNMR, b. ¹³ CNMR, c. DSC-TGA
28	Tris(diaminomethaniminium) 2,4,6-trinitrobenzene-1,3,5-triolate (5e)
20	a. ¹ HNMR, b. ¹³ CNMR, c. DSC-TGA

1. Picric acid

2. 4H-1,2,4-Triazol-4-aminium 2,4,6-trinitrophenolate (1a)

3. 3-Amino-1*H*-1,2,4-triazol-4-ium-2,4,6-trinitrophenolate (1b)

4. 3,5-Diamino-1*H*-1,2,4-triazol-4-ium-2,4,6-trinitrophenolate (1c)

5. 3,4-Diamino-1,2,5-oxadiazol-2-ium 2,4,6-trinitrophenolate (1d)

5c. DEPT

5d. TG-DTA

6. Diaminomethaniminium-2,4,6-trinitrophenolate (1e)

7. 2,4,6-Trinitro-m-cresol

8. 4H-1,2,4-Triazol-4-aminium 3-methyl-2,4,6-trinitrophenolate (2a)

9. 3-Amino-1*H*-1,2,4-triazol-4-ium 3-methyl-2,4,6-trinitrophenolate (2b)

10. 3,5-Diamino-1*H*-1,2,4-triazol-4-ium 3-methyl-2,4,6-trinitrophenolate (2c)

10c. DEPT

10d. TG-DTA

11. 3,4-Diamino-1,2,5-oxadiazol-2-ium 3-methyl-2,4,6-trinitrophenolate (2d)

11c. DEPT

11d. TG-DTA

12. Diaminomethaniminium 3-methyl-2,4,6-trinitrophenolate (2e)

13. 3-Azido-2,4,6-trinitrophenol

27 Fr. GVD-68-dept 721

15. 3,5-Diamino-1H-1,2,4-triazol-4-ium 3-azido-2,4,6-trinitrophenolate (3c)

15c. TG-DTA

17. Diaminomethaniminium 3-azido-2,4,6-trinitrophenolate (3e)

17c. TG-DTA

18. Styphnic acid

19. Bis(3-amino-1H-1,2,4-triazol-4-ium) 2,4,6-trinitrobenzene-1,3-diolate (4b)

19c. DEPT

19d. TG-DTA

20. Bis(3,5-diamino-1H-1,2,4-triazol-4-ium) 2,4,6-trinitrobenzene-1,3-diolate (4c)

20c. DEPT

20d. TG-DTA

21. Bis(3,4-diamino-1,2,5-oxadiazol-2-ium) 2,4,6-trinitrobenzene-1,3-diolate (4d)

21c. DEPT

21d. TG-DTA

22. Bis(diaminomethaniminium) 2,4,6-trinitrobenzene-1,3-diolate (4e)

22c. DEPT

22d. TG-DTA

23. 2,4,6-Trinitro-1,3,5-benzenetriol

25a. ¹H NMR

gvd-24i

27. Tris(3,4-diamino-1,2,5-oxadiazol-2-ium) 2,4,6-trinitrobenzene-1,3,5-triolate (5d)

28. Tris(diaminomethaniminium) 2,4,6-trinitrobenzene-1,3,5-triolate (5e)

